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NECESSARY AND SUFFICIENT CONDITIONS OF OPEN-LOOP
AND CLOSED-LOOP SOLVABILITY FOR DELAYED STOCHASTIC
LQ OPTIMAL CONTROL PROBLEMS*

WELJUN MENG', JINGTAO SHIf, J.FENG ZHANGS, AND YANLONG ZHAOT

Abstract. In this paper, a linear quadratic optimal control problem driven by a stochastic
differential delay system is investigated, where both state delay and control delay can appear in the
state equation, especially in the diffusion term. Three kinds of solvability for the delayed control
problem are proposed: the open-loop solvability, the closed-loop representation of open-loop optimal
control, the closed-loop solvability, and their necessary and sufficient conditions are obtained. The
delayed control problem is transformed into an infinite dimensional optimal control problem without
delay but with a new control operator. Some novel auxiliary equations are constructed to overcome
the difficulties caused by the new control operator, because state delay and control delay coexist, and
some stochastic analysis tools are lacking in the study of the above three kinds of solvability. The
open-loop solvability is assured by the solvability of a constrained forward-backward stochastic evo-
lution system and a convexity condition, or by the solvability of an anticipated-backward stochastic
differential delay system and a convexity condition; the closed-loop representation of the open-loop
optimal control is given via a coupled matrix-valued Riccati equation; the closed-loop solvability is
assured by the solvability of an operator-valued Riccati equation or a coupled matrix-valued Riccati
equation.

Key words. linear quadratic control, time delay, open-loop solvability, closed-loop solvability,
Riccati equation

AMS subject classifications. 93C25, 49K15, 49K27, 49N10

1. Introduction. Many problems can be regarded as optimal control prob-
lems in the fields of economy, finance, aerospace, network communication and so
on (see [3,5,7]). In the real world, the development of certain phenomena depends
not only on the present state, but also on the past state trajectories. After a controller
exerts control, it takes some time to have a practical effect on the control systems.
Meanwhile, the development of control systems is affected by some uncertainties.
Therefore, how to obtain the optimal control of stochastic control systems with both
state delay and control delay, has become the core problem of control theory.

Delayed control systems have wide background and applications (see [3,7,9,13,14,
24,26]). For example, we consider a pension fund model introduced in [7], and modify
it to take into account the time of implementing the portfolio strategy. Suppose that
the manager can invest in two assets: a risky asset (e.g. stock) and a riskless asset
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2 WEIJUN MENG, JINGTAO SHI, JI-.FENG ZHANG AND YANLONG ZHAO

(e.g. bond). Then, the wealth equation is as follows:

{ dz(t)=[rz(t)+oiu(t—0)|dt— [q+ f(z(t)—z(t — §))]dt+ou(t—8)dW (t),0<t<T,
z(0) = ¢(0), u() =1(0), 0 € [-0,0],

where z(+) is the fund wealth, u(-) is the amount of money invested in the risky asset,
r > 0 is the instantaneous return rate of the riskless asset, u > r is the instantaneous
rate of expected return of the risky asset and o > 0 is the instantaneous rate of
volatility. Assume that p can be expressed by the relation y = r + oA, where A > 0
is the instantaneous risk premium of the market. Compared with the classical self-
financing portfolio model, u(t — &) considers the time of implementing the portfolio
strategy, and the difference g + f(x(t) — (¢t — §)) represents the external cashflows
of contributions and benefits which enter the dynamics of the fund. The portfolio
strategy u(t — &) at time ¢ — 0 is executed at time ¢, when the asset prices and the
fund wealth have already changed. ¢ is the difference between the exiting cashflow
of the aggregate benefits, paid by the fund as a minimum guarantee to its members
in retirement, and the entering cashflow, paid by the members who are adhering to
the fund. f is a constant, and the term f(z(t) — (¢t — §)) represents the dividends
to members when the investment is profitable or the replenishment of cash flow when
the investment is loss-making. () is the initial wealth or the fund donated at [—4, 0],
and v(-) is the initial investment strategy according to ¢(-). The manager wants
to achieve the expected return a, that is, he would like to minimize the following
objective functional:

J(p(), ¥ ();u()) = E[|2(T) — af?].

In the above, we use a single delay to describe the time of implementing the portfolio
strategy. In fact, in the fields such as biology, physics and medicine, a single delay
cannot adequately describe the dynamics of a system, multiple pointwise delays and
distributed delay have to be used (see [13, 14, 24]), because the time required for
plants and animals to grow and mature varies significantly, the transport and diffusion
rates of substances are also different, and sometimes these delay effects show smooth
changes in time, rather than instantaneous responses.

Motivated by these practical examples, we would like to study stochastic linear
quadratic optimal control problems with both state delay and control delay. In the
18th century, Euler, Bernoulli, Lagrange, Laplace and Poisson firstly considered delay
systems when studying various geometric problems. For deterministic delayed optimal
control problems, Delfour in [6] solved a linear quadratic optimal control problem with
pointwise and distributed state delay by the product space approach. Later, Vinter
and Kwong in [32] reformulated a linear differential delay system with distributed
control delay as an evolution system with bounded control operators by the structural
state method. Ichikawa in [12] studied an optimal control problem with pointwise
control delay by the extended state method. Subsequently, massive research results
have been produced, such as [1,2]. Stochastic differential delay equations (SDDEs) are
usually used to describe the dynamics of delayed stochastic systems, more references
can be referred to [25,26]. So far, optimal control problems of stochastic differential
delay systems have been extensively studied. When only state delay appears in control
systems, Flandoli in [8] transformed the delayed optimal control problem into an
abstract one in Hilbert space, then derived the optimal feedback. Liang et al. in [19]
applied the method of completion of squares to obtain the feedback of the optimal
control. When only control delay appears in control systems, Wang and Zhang in [33]
described equivalently the stochastic control systems with input delay by an abstract
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SOLVABILITY FOR DELAYED LQ PROBLEMS 3

model without delay in a Hilbert space, then derived the feedback of the optimal
control. Zhang and Xu in [36] gave the solvability condition of the optimal control
and the analytical controller based on a modified Riccati differential equation. For
more literature, readers can be referred to [7,11,23] (for stochastic optimal control
problems with state delay only) and [3,11,34] (for stochastic optimal control problems
with control delay only). However, when state delay and control delay both appear in
control systems, most literature only studied the maximum principle for the optimal
control, and did not provide the feedback of the optimal control (see [5,9,17,35]).

Recently, Sun and Yong in [29] firstly found that there is a significant difference
between open-loop and closed-loop saddle points for a stochastic linear quadratic two-
person zero-sum differential game. As a continuation work of [29], Sun et al. in [28]
studied the open-loop and closed-loop solvability for stochastic linear quadratic opti-
mal control problems, and established the equivalence between the strongly regular
solvability of the Riccati equation and the uniform convexity of the cost functional.
Ni et al. in [27] considered a stochastic linear quadratic problem with transmission
delay, and characterized its solvability by Riccati-like equations and linear matrix
equality-inequalities. As for related problems in an infinite time horizon, Sun and
Yong in [30] discussed a stochastic linear quadratic optimal control problem with
constant coefficients and researched the open-loop and closed-loop solvability. Li et
al. in [18] presented a systematic theory for two-person non-zero sum differential
games of mean-field type stochastic differential systems with quadratic performance
in an infinite time horizon. In the aspect of infinite dimensional problems, Lii gen-
eralized [28] to a stochastic linear quadratic optimal control problem governed by a
stochastic evolution system in [20], and put two strict assumptions. Later Lii in [21]
dropped them, gave the closed-loop solvability for a linear quadratic optimal control
problem driven by a mean-field type stochastic evolution system, and improved the
main results in [20] noticeably.

This paper investigates a stochastic linear quadratic optimal control problem
involving both state delay and control delay, the optimal control consists of three
parts at least: the first one is proportional to the current value of the state, the second
one involves an integral of the state trajectory over the past time interval, and the
third one involves an integral of the control trajectory over the past time interval. The
structure of the optimal control is so complex, therefore, how to define the closed-loop
solvability for the delayed stochastic optimal control problem? After the appropriate
definitions are introduced, how to characterize the closed-loop solvability?

The contributions and innovations in this paper are summarized as follows:

e A very general model is studied. Both state delay and control delay can appear
in the state equation and the cost functional, especially in the diffusion term.
When the original delayed system is transformed into an infinite dimensional
control system without delay, the new control operators appear and can not
be dealt with using the existing methods (see [8,15,16,19,33,36]). Thus, some
new approaches are constructed to overcome the above difficulties.

e Three kinds of solvability are proposed: the open-loop solvability, the closed-
loop representation of the open-loop optimal control and the closed-loop solv-
ability for the original delayed stochastic optimal control problem. To charac-
terize them, an equivalent optimal control problem without delay is construc-
ted, and then the open-loop and closed-loop solvability are defined.

e Some necessary and sufficient conditions for the above three kinds of solvability
are derived.

This manuscript is for review purposes only.
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(a) The open-loop solvability is assured by the solvability of a constrained
forward-backward stochastic evolution system and a convexity condition.
A novel backward equation is introduced as an adjoint equation, since
the new control operators make the transformed problem not a standard
infinite dimensional stochastic optimal control problem, and its existence
and uniqueness is proved by an equivalent backward stochastic evolution
equation. Moreover, a clearer equivalence condition is deduced by going
back to the original delayed control problem.

(b) The closed-loop representation of the open-loop optimal control is given
through a coupled matrix-valued Riccati equation. The transformed sto-
chastic optimal control problem with the new control operators can not
be approximated by infinite dimensional control problems with bounded
control operators, due to the lack of stochastic analytic tools. An integral
operator-valued Riccati equation is constructed to overcome the difficul-
ties caused by the new control operators, and inspired by this, the above
coupled matrix-valued Riccati equation is obtained.

(¢) The closed-loop solvability is assured by the solvability of a differential
operator-valued Riccati equation. This is the first result for the closed-
loop solvability of delayed stochastic optimal control problems. The
difficulties are overcome through the introduction of the closed-loop strat-
egy in decoupling forward delayed state equations and backward advanced
adjoint equations, and sufficient conditions for the solvability of the Ric-
cati equation are also provided. In addition, a clearer characterization of
the closed-loop solvability is displayed by a coupled matrix-valued Riccati
equation when going back to the original delayed control problem.

This paper is organized as follows. Section 2 formulates the optimal control
problem for a stochastic differential delay system. Section 3 transforms it into an
infinite dimensional control problem without delay. Section 4 derives necessary and
sufficient conditions for the open-loop solvability. Section 5 presents the closed-loop
representation of the open-loop optimal control. Section 6 ensures the closed-loop
solvability under certain conditions. Finally Section 7 gives some concluding remarks.

2. Problem formulation. Suppose (2, F,F,P) is a complete filtered probabil-
ity space and the filtration F = {F;}+>0 is generated by a one-dimensional standard
Brownian motion {W(t)}:>0. E:[] denotes the conditional expectation with respect
to Fy, i.e. Ey[-] = E[ - |F]. First we define the following spaces which will be used in
this paper. Let F be a closed convex subset of R”, and F a real Banach space. Then,
L*>°(F; E) denotes the Banach space consisting of F-valued functions ¢(-) such that
supier ||¢(t)||E < oo, H(F; E) denotes the Sobolev space consisting of square inte-
grable functions with square integrable distributional derivatives D;¢, L2(Q; C(F; E))
denotes the Banach space consisting of E-valued F-adapted continuous processes ¢(-)
such that E[sup,c ||¢(t)]|%] < oo, LE(F; E) denotes the Hilbert space consisting of
F-adapted processes ¢(-) such that E [, [|¢(t)||5dt < co. When F = [a,b] C R, we
simply denote L?(a,b; E) for L?([a,b]; ') and other spaces are similar.

Let || - ||g: and (-, )1 denote the norm and the inner product in the Sobolev
space H!(F; E), similar to other spaces. For simplicity, |-| and (-, -) denote the norm
and the inner product in the Euclidean space. E’ denotes the dual space of E, and
the symbol (-,-)g/ g is referred to as the duality pairing between E’ and E. Given
two real Hilbert space U; and Us, £ (Uy,Us) denotes the real Banach space of all
continuous linear maps, when Uy = Us, we write .£(U;) in place of £ (Uy,Usy). @*
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SOLVABILITY FOR DELAYED LQ PROBLEMS 5

denotes the adjoint operator of ® € £ (U, Us). S™ is the space of all n X n symmetric
matrices, I is the identity matrix with appropriate dimension or the identity map, and
R is the operator range or the matrix range, if no ambiguity exists. The superscript
t represents the Moore-Penrose inverse of vectors or matrices.

In this section, we formulate the stochastic optimal control problem.

For given finite time duration 7" > 0 and given constant time delay 6 > 0, let
A(df) be R™*"-valued finite measure on [—9,0] as follows:

(2.1) /[5,01 Z A;p(6; / A0

with any square integrable function cp( ), and —0 =0y <Ony_1<---<01 <0=0.
A; and A° represent the pointwise delay and the distributed delay, respectively. B(d#)
and D(df) are similar to (2.1), involving B;, B°(-) and D;, D°(-), respectively. The
term about C(df) has the following form:
(2.2) / C(dO)@(0) == Cop(0 / (0

[=6,0
For given s € [0,T), consider the following controlled linear SDDE:

X (1) = /[_60]<A(d9)Xt(9)+B(d9)ut(9))dt

(2.3) + /[ 6O](C(dG)Xt(H)+D(d9)ut(9))dW(t), tels T,

X(s) =, X(7t)=<,0(t—s)7 tels—4,s),
u(t) =yt —s), tels—0,9],

along with the cost functional as follows:

T
T o) =E{ [ [ [ Q.o x,0), 0
+2(S(t, A0 X1 (0), up(6)) + (R(t, dOAO Yuy(6), s ()] dit

(2.4) + /[ o (G(d0d0") X7 (0), XT(o')>}.

Here, X(-) is the state and u(-) € L2(s,T;R™) is the control. =z is the initial
state, ¢(-) € L?(—4,0;R™) and (-) € L?(—4,0;R™) are the initial trajectories of
the state and the control, respectively. X;() := X(t + ) and us(-) = u(t + ),
represent the past trajectories of the state and the control. In the cost functional
(2.4), Q(t,d8df") and S(t,dfdd") are also finite measures, involving Qoo(-), Q10(*, ),
Q11(+, -, ) and Spo(+), So1(+, ), S10(*, ), S11(+, -, ), respectively:

(QUe,d0d8)30),50)) = [ (Qui(t,6.0)5(0), ) do'ds
[6,0]2 (6,012

+<Q00(t >+2/ <Q10 t 9 ) 90( )>d9’ Vgé c L2(75’0;Rn)7
/[—6 O}Q(S(Ld@d@ )p(0 )»1/;( ") = <Soo( )3(0 )ML(O»

0 N 0 N
4 / (Sox(,0)3(8), (0) ) + / (S10(t,0)TB(0), 3(0) )b
—6 -

+ (S11(t,0,0")5(0),4(6))do'do, ¥y € L*(—5,0;R"™), ) € L*(—4
[—4,0)?
R(t,d0df") and G(dfdf’) are similar to Q(t,d6d8’), involving Roo(-),R10(:, ), Ru(7 )
and GOO,GIO('),GH(', ) In the above, Ai,CO,GQO ER"XH, B;, D; ER”XM, 1=0,---, N,
AO(')7BO(')700(')7D0(')7Q00(')7Q10('7 '))Qll('7 Yy ')7500(')7‘5’01('7 ')7S10('7 ')5511( ) ROO( )

Rio(,),R11(,,),G10(+),G11(, ?) are matrix-valued functions of appropriate dlmensmns

O;R"L)’
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Let us assume the following:
(A1) The coefficients of the state equation (2.3) satisfy the following assumptions:

A%(),C0) € L*°(0, T;R™ ™), B°(:),D°(-) € L*°(0, T; R™*™).

(A2) The coefficients of the cost functional (2.4) satisfy the following assumptions:
Qool") € I=(0,T;8%),  Quol-,-) € L%(0,T] x [~6, 0 R™™),
Q11(- ) € L>([0,T] x [-6,0] x [=6,0; R™™™),  Soo(-) € L>(0, T;R™*™),
So1(:,-) € L([0,T] x [—6,0; R™*™),  Sio(-,-) € L>([0,T] x [-4,0[; R™*™),
S, 0) € L([0,T7 x [=6,0] x [=0,0; R™*™),  Roo(-) € L>(0,T;8™),
Rio(-, )€L°°([ T x[=6,0L;R™ ™), R11(+, -+, -) € L*([0, T] x [—6, 0] X [—6, O;R™*™),
GIO( ) S L°°([O T] [ d, 0] Rnxn)’ Gll(') S LQ(—(S,O;Rnxn), Goo € S™.

Qui(t,0,0)" = Qu1(t,0',0), Ri1(t,0,0)" = Ri1(t,0,0), G11(0,0)" = G11(¢',0).
We choose the product space 9 := R™ x L?(—4,0;R™) as the space of initial data,

which is a Hilbert space endowed with inner product and norm
0

(z,y)om = (2°,°) + /6<x1(t¢)),yl(6’)>d97 and ||z]lon = (x, 2)dy,
ve = (%) — (% 0 y° e Rzl y" € L*(—6,0;R")
- ’l}l ) Y= yl ’ T,y LY s Vs .
Under Assumptions (A1)-(A2), for any initial data (s, x, ¢, %) € [0,T)xMx L?(—4,0;
R™) and any admissible control u(-) € L2(s,T; R™), by the Picard iteration method
or by Theorem 2.1 ( [25], Chapter II), the SDDE (2.3) admits a unique solution X(-)=
X(+5 8,2,0,0,u(-))ELA(C([s,T];R™)), therefore the cost functional (2.4) is meaningful.
Problem (P). For any (s,z,p,1) € [0,T) x M x L*(—§,0;R™), to find a u(-) €
Li(s, T;R™) such that (2.3) is satisfied and
J(s,x,0(), () u(-)) = inf J(s,z,0(), () u(-) = V(s,z, (), ().
(O R0 = e IO 6C0) = Vs () 0)
Any u(-) € Lg(s, T;R™) that achieves the above infimum is called an opti-
mal control for the initial data (s,z,¢,v), and the corresponding solution X (-) =
X(-;8,x,p,9,u(-)) is called the optimal state. The function V(-,-,-,-) is called the
value function of Problem (P).

3. Problem transformation. In this section, inspired by [6] and [12], we study
Problem (P) by a control problem without delay, containing a new control operator.
Define the Cyp-semigroup ®(-) as follows:

O(t) : M — M
(3.1) s (j}g) Ve = (i) o,

where z(-) = z(- ; s, x,¢) is the solution to the following equation:
x(t) :/ A(df)x:(0), a.e. t €[0,T],
(5,0

0]
Z(O) =, (E(t) = Qo(t)’ te [*& O)»
with z¢() := x(t + -). The generator of ®(-) is defined as

A:9(A) —m
(3.2) £ (f[“” 4((_650)*0(9)) , VEe 9(A),
and its domain is Z(A) = {£ = Tem| () € H(=6,0;R™),z = ©(0)}. As

mentioned in [6], @(fl) is dense in sm and is a Banach space endowed with the norm
||§H@(A) = |l¢()||z1. Denote £ := L?(—4,0; R™) and define the following operators:
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B:g—M D:£—Mm C:Mm—M
(3.3) ¥ H@—W]Béd@w@) , ¢H<f[—a,0} Déd9>w<9>> | (@) H(Cowf_%coowxow)da) .

Then, C € £ (M), but B,D ¢ Z(£,9M). Thus, we can write (2.3) in R™ as the
following stochastic evolution equation (SEE) in 9

dX(t) = [AX(t) + Bug]dt + [CX(t) + D(t)u]dW (¢), te s T],

X(s) =¢ = Z ut)=w(t—s), te[s—ds].

By Theorem 3.14 in [22], the SEE (3.4) has a unique solution. If we regard X(-) as
the new state, then (3.4) does not contain state delay. Before dealing with control
delay, we give the following result to illustrate the equivalence of (2.3) and (3.4).

LEMMA 3.1. Let (A1)—(A2) hold. For all £ € M, ¥(-) € £, u(-) € L*(s, T;R™),

assume that X (+) is the solution to (2.3). Then, X(-) defined as X(t) := ())g((t))> , 18
(-

(3.4)

the mild solution to (3.4), i.e.
(3.5) X(t):<I>(t—s)f—l—/t@(t—T)Burdr—l—/(tI)(t—r) [CX(r)+Du,|dW (r),t € [s,T].
S S
Furthermore, there exists a constant M0> 0 such that -
B| s IXOI] <8 1e+ [ (0@ + )20+ 5 [ futr)ar .
The proof is similar to Theorem 2.3 in [8], and thus is omitted here.

Remark 3.2. From Lemma 3.1, the SDDE (2.3) is equivalent to the SEE (3.5).
When Cy, C°(0), D;, D°(6) depend on ¢, Lemma 3.1 holds, i = 0,--- , N. When (2.2)
contains multiple pointwise delays, Lemma 3.1 also holds, see Pages 941-943 in [8].

Next we deal with control delay, introduce the semigroup of left translation:

Lt):£— L
Y(t+0), —0<0<—t, <
(3.6) [L()Y](0) := { 0, —t<6<0, ift<o,
0, -5 <60<0, if t > 4.
Its generator is given by A : Z(A) — £, AY = 9% VY € 9(A). The domain

2(A) = {Y € H'(-6,0;R™)| Y is absolutely continuous and Y (0) = 0}, is a Banach
space endowed with the norm |- ||z1. Denote V := H'(—4,0;R™), let V' be the dual
of V', and consider the following evoluttion equation:

(3.7) Y, = £(t— s+ / L(t = r)Au(r)dr, t € [s,T],

with the bounded linear operator AR — V', (Au,w)yr v = (u,w(0)), Vu €
R™, w € V. Then, by Lemma 1.1 in [12], (3.7) is well-defined and

u(t+6), s—1t<60<0, ft_s<§
(38)  Yu0) =3 w0+t s<f<s—t, =0
u(t +0), -5<60<0, ift—s>9.

By (3.8), we get Y¢(6) = u.(0) for almost everywhere 6 € [—4,0] and all ¢t € [s,T].
Therefore, (3.5) can belt written as the fo%lowing formula, equivalent to (2.3):
X(t) :fb(tfs)@r/ ®(t—r)BY  dr+ / O(t—7)[CX(r)+DY, JdW (r), t€[s,T],
(3.9) s s
Y. =L({t—s)p+[ L(t—r)Au(r)dr, te€[s,T].

S
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Denote 3 =M x £, for any z = (i), z21 = (2}11) and zy = (%2) €3, |zllz:=

[||§“H§n+||1/}||%]% (21, 22)3:=(&1,&2)m + {1, 12) ¢. Define the following Cp-semigroup:
T(t):3—3
)¢ + t— Pd
w0 (§) =[O g0

and Zo:= @ V()= (é)) < ) <C D> Then, (3.9) can be written as

(3.10) Z(t):T(tfs)Zo+/ T(t — r)Bu(r )err/ T(t — r)CZ(r)dW (r).

Noting C¢.Z(3), B maps R™ to 9 XV’ out 3, thus B¢.Z(R™, 3), the above integration

is not defined in 3, (3.10) is just a formal expression and it actually means (3.9).
Now we have transformed the original delayed state equation (2.3) into the new

state equation (3.10) (or (3.9)), containing neither state delay nor control delay.

Next we rewrite the cost functional (2.4) by Z(-) and u(-), before that we define
some bounded linear operators. Recalling £:=L* —6, 0;R™), we also denote L% -4, 0;
R™ by £ for ease of writing, and the dimension depends on the specific situation.

Denote Roo(t).i’ = Hoo(t).’i‘ ,‘7@01( (,5 = f05 ;‘101 t 9)~(9)d9 (I’ilo( ) )() = K,lo(t,')i‘,
(1)) (- f_ k11(t,0,-)p(0)dl, for any & € R4 ¢ € £,d = n,m, where k =
Q,S, R,G,QOl(t,e) Q10(t 9) ROl(t 9) Rlo(t,ﬂ) ,G01(§):G10(9)T. Then, Q()l(t)*:
Q10(t), Ro1(t)*=Rio(t), Gi,=Gho. Notice that So; (t)*=S10(t) is not always true. Let
Qoo(t) Qui(t) | &rpy.[ S00o(t) Sor()] (py._[ Foo(t) Ron(®) | &._[ Goo Gon
Q( )= [Qm( t) Qn(t)}‘s’(t). {510( t) 511( )} Rt {Rw(t) Ru(t)}a [Gm G11:|

Then, we rewrite the cost functional (2.4) as follows

Ts,2,00). 6()iu()) =E [ T[<@<t>X<t>,X<f>>+2<5‘<t>x“>’@?) )

(3.11) +<R(£) (%?) , <“‘({’?> )] dt + B(GX(T), X(T)).
In the above, (-,-) has the different meaning.
Define

So(t) = [Sgo() ?m(t)] Sy(t) == [Si0(t)  Su(t)], S(t) :=[So(t) Roi(t)],
| Q1) Si()” _laGa o 7

Q) = | a | e=]G 2] R0 Ra

Then, we rewrite (3.11) like this:

IsZosu() =2 [ [(Qe)z(0). 2(0), +2<s<t>z<t>,u<t>>

(3.12) H(R()ult), ult )>]dt+ E(GZ(T), Z(T)),,
thus we transform Problem (P) into a linear quadratic problem assoc1ated with (3.10)
(or (3.9)) and (3.12), and we formulate it specifically as follows.

Problem (EP). For any (s,Z) € [0,T) x 3, to find a @(-) € L&(s,T; R™) such
that (3.10) (or (3.9)) is satisfied and
3.13 J(s,Zg;u(-)) = inf J(s,Zo;u(-)) :=V(s,Zo).
(313) (Zosa() =t (s Zgut) = Vi Z)

Similarly, any u(-) € L2(s,T;R™) that achieves the above infimum is called an
optimal control for the initial pair (s, Zg), and the corresponding solution Z(-) is called
the optimal state. The function V(-,-) is called the value function of Problem (EP).
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Remark 3.3. By (3.7), (3.8), (3.9) and Remark 3.2, Problem (P) is equivalent
to Problem (EP). When Cy, C°(6), D;, D°(0) depend on t, the equivalence also holds,
i=0,---, N. We transform the delayed finite dimensional Problem (P) into the infinite
dimensional Problem (EP) without delay, containing the new control operator B. It
is worth mentioning that the unboundedness of B is as high as that studied by [15,16],
but its domain does not have a relation to that of the semigroup generator. Therefore,
the existing approaches in the literature do not apply. In the rest section, we will take
some new methods to address the unboundedness of the control operator.

4. Open-loop solvability. In this section, we define the open-loop solvability
for Problem (P) by the transformed Problem (EP), and assure it by the solvability of a
constrained forward-backward stochastic evolution system and a convexity condition.
Finally we turn back to the original Problem (P) and explore its open-loop solvability.

First we give the definition of the open-loop solvability for Problem (P).

DEFINITION 4.1. Problem (P) is said to be

(i) (uniquely) open-loop solvable at initial data (s,x,p,¥) € [0,T] x 3, if there
exists a (unique) u(-) € Li(s, T;R™) satisfying (3.13).

(ii) (uniquely) open-loop solvable at some s € [0,T), if for any (x,p,v) € 3,
there exists a (unique) u(-) € L2(s, T;R™) satisfying (5.13).

(iii) (uniquely) open-loop solvable on [s,T), if it is (uniquely) open-loop solvable
at allt € [s,T).

Next we give the necessary and sufficient condition of the open-loop solvability.

THEOREM 4.2. Let (A1)—(A2) hold. For any given initial data (s,z,¢,v) €
[0,T) x 3, a(-) is an open-loop optimal control of Problem (P) if and only if the
following two conditions hold:

(i) (Stationarity condition)
(4.1) So(t)X(t) + Ro1(t) Y+ + Roo(t)a(t) + [p2(¢)](0) =0, a.e. a.s.,
where (X()vapl()v kl()aPZ()v kQ()) L]%‘(Q C([S,T], m)) Lz(Q C([S T} 2))
LA(;C([s, T];9M)) x L3 (s, T; M) x L2(Q; C([s,T); £)) x L2(s,T; L) is the solution to
the following forward-backward SEE:

() X(t) = B(t — s)e + / "Bt — 1) BYdr
+ /t Ot — ) (C’X(r) n DYr>dW(r), te[s,T),
() Yi=L(t—s)+ /t Lt —r)Au(r)dr, te€[s,T],

T ~

(€) pi(t)= (I)(T_t)*GX(T)+/t O(r—1)*[C* k1 (r)+Q(r)X (r)+So (r)*u(r)

+5.(r)*Y ]dr—/ O(r —t)*ky (r)dW(r), telsT),
TA(t+5+6) !

(d) [pz(t)](9)=/t (51 ()R ()4 Ron (1) () + By (7)Y, (140 —r)dr
+f (B Ipa(t+6-8)+DAB s t+6 - H))Liro-r.0(6)
[=0,0]

TA(t+540)
[ lemler0-naw ), e 5Tl € (-0,
t
with é&=(z 7,0 ")" [p1(r)]°,[k1(r)]°€R™ denote the R™ components of pi(r) and ki (r).

This manuscript is for review purposes only.
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(i) (Convexity condition)
(4.3) J(s,0;u’(-)) =0, Vu(-) € L&(s, T; R™),
where (X°(+),Y?) is the solution to the following integral equation:

XO(t) = /t ®(t — r)BY dr + /t O(t—1) (éxO(T) + DYS)dW(r), tels,T),

: S
Y) :/ L(t —r)Au’(r)dr, tels,T).

Proof. We split the proof into three steps as follows.

Step 1: For given u(-) € Li(s,T;R™), show that the forward-backward SEE
(4.2) admits a unique solution.
By Theorem 4.10 in [22], (p1(), k1(-)) € L2(Q; C([s, T);9)) x LZ(s, T;M). It remains
to prove that (4.2)(d) admits a unique solution (pa(-), ka(+)) € Lg(; C([s, T; £)) x

Li(s,T; £) for given (X(-),Y., p1(-),k1(-)). Notice that B, D € £(Z(A),M). Then,
for any k € 2(A),
T

T
</t L(r—t)"B*py(r)dr, H>(@(A)',@(A)>:/t <B pl(’r>,,C(T‘—t)li><@(A),7@(A)>d7‘

- /t (0 (1) BL(r— D))ondr = / 0 ( /[_5 O a4 =0 L1 0) R(r))dr,

-5
it follows that

T
([ £t =0 Bnmar)o=[ B +0 -5 o1 (4)

Similarly, we have

(4.5) ( /t E(r—t)*D*kl(T)dr) )= / ) D(dB)" [k (t + 0 = B)°Lsro-1.6)(8)-

0]
By (3.6) and Lemma 3.3 in [7], (4.2)(d) is equivalent to the following backward SEE:
T
132(15):/E(T*t)*[B*pl(THD*kl( )+ 51 ()X (r)+ Ria (r) Y,
t

(4.6) +R01(T)*ﬂ(r)] dr —/t L(r—t)*ko(r)dW (r), t € [s,T].

Next we would like to prove that (4.6) admits a unique solution (pa(:),k2(-)) €
LA(;C([s,T]; £)) x Li(s,T; £), and we only need to prove the existence. Denote

po(t) =T, [/E r—t) (B*pl( Y4+ Dy (1) 4+ Sy (1) X (r) + Ry (7 )YT—I—R()l(?“)*u(T))dr}

Then, we have

pa0=Re| [ (D) ha(t4-= P+ BB a0 13

E, |:/tT,C(T‘—t)* 5’1(T)X(T)+R11(T)Y7~+R01(T)*u(r)>dr] 3:I(t)—|—II(t).

Let L?(s,T;L3(s,T;£)) be the Banach space of all strongly %([s,T])®%([s,T))® Fr-
measurable functions h : [s,T]2xQ — £, satisfying that for r € [s,T], h(r, -) is F-adapted

and Ef; f ||h(r,8)|]22dBdr<cc. Notice that Si(-)X(-)+Ri(-)Y +Ro1 (-)*a(-) € LE(s,T;
. Then, by Corollary 2.149 in [22], there exists h(-, )€L2(S T;L%(s,T;£)) such that

TI(t //: r—t)* 51 (F)X () Ray (7)Y o+ Rog (r /h r.f8) dW(ﬁ)}dr,te[s,T],

which yields

This manuscript is for review purposes only.
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II(t) = /t ' X(r) 4+ Ruy(r) Y, + Rm(r)*ﬂ(r))dr
/T

£ =) (5(r)
T
L(r—1t)* / L(B—r)"h(B,r)dBdW (r).

t
For I(t), we have
N

—E, ( k1 (t+0—0,)] +Bj[p1(t+0—9i)]0)1[t+9_T,9](9i)

0 1=
@n + / 5 ( O(9) (10 )1+ B°(6) T +0- 1) o (313
Since [p1()]°, [k1(-)]° € L2(s, T;R"), by Corollary 2.149 in [22], there exists h(-, ),
h(-,-) € L?(s,T; L3(s, T; R™)) such that for almost everywhere 7€ [t, T],
(P =Esfps ()% [ R )aW o), a() =Bl ()4 Rrr)aw (o),

t

7 which and (4.7) yield that for almost everywhere 6 € [—0, 0],

N

KOIO)=] S (DT 1+0-001°+BT 1 1+0-001°) o108

=0
0
] (DP6) ala+0- 00 +B°5) T 0+0- 1) a1

TA(t+5+0) 3 -
_/ [Z(B:h(t—l—@—ei, 7")+D;rh(t+9—9i, ’I“)) 1[t+6—T,t+6—r] (9l>
t 0

0 o )
+/ (DO (B) " h(t+0—8,r+B°(B) "h(t+6—8, 7”)) Lito-1t10-n) (ﬂ)dﬁ]dW(T)-
=5

Define
N = ~
[:(r))(8) == Y- (DT h(r +6 = 05,7) + BIR(r + 0 = 6:,7)) 101,01 (63)
=0
0 ~
4 (D°(B)Th(r+6-8,1) + B(8) Th(r+0—5,1) ) 1s10-7.0(8)dB.
Then, by (4.4) and (4.5), we obtain

1(t) :/ L(r—1t)* (D*k1(7’) +B*p1(r))drf /tTE(rt) k(r)dW (r).

~ T ~

Ralr) = [ £(8 = 1) h(3r)d5 + Fio).
Then, (fa(-), kao(-)) satisfies (4.6). Notice that (pi(-),k1(-)) € LA(Q;C([s, T];M)) x
L%‘(SaT;m)7 h(7) € !’2(57T; L%(S,T,,Q,)) and h( )7 ( 2(5 TaL]F(S’T7Rn))'
Then, we have (pa(-), ka(-))€ L2(;C([s, T); £)) xLz(s, T

Step 2: Prove the necessity of Theorem 4.2.
Applying (3.3) and Theorem 3.3 in [10], we have

IE/f((pl(t),BY?)m—i—(k:l(t),EY?)gm>dt

T
:E/<X°(t)’Q(t)X(t)+§1( )Y +S80(t) a(t))mdt+E(GX(T), X°(T)) .

k
h(,

) €
2.

This manuscript is for review purposes only.



366

367

368

369

12 WEIJUN MENG, JINGTAO SHI, JI-.FENG ZHANG AND YANLONG ZHAO

Noting for any f(-) € Li(s,T; £), we have

(4.8) / (YP, F(t)) .t E/S:F<u0(t),/tTA(tEfts()r)](tr)dr>dt.

By ko(-) € L&(s,T; £), we deduce

T+6
// k‘gt— |2dtd9+]E// |[k2(t — 6))(0)|?dtde
+9
_]E// |[ka(t — 0)](0)|?dtd0 = E // [k ()] (0)[*dOdr < oo,
+0

which implies that
TV (t+8)

E ko (P)](t —7)Pdr < o0, a.e. t € [s,T].

Thus, we obtain

T/\(t+6) TA(t+6)
(4.9) /<u / ) (t—r)dW (r))dt= ]E/S< ()Et/t[kg(r)](t—r)dW(r)>dt:0.

By the deﬁn:;tlon of B, we derive , N
B [ (pi(0) BYD)pt =B / (I (0%, Y Ba1+0)
S i=0
a0+ [ B+ D (D))t
— 0
10 =5/ (0w, /{m (48) Tlpr (1= )Ly 01 (B)) .

By the definition of D, we obtain
T T
(4.11) IE/ {(k1(t), DY?>mdt:E/ <u0(t), D(dB) " [k (t—B)]"1js—1,0) (ﬂ)>dt.
s s [—6,0]
By (4.8)—(4.11) and applying the convex variation technique in Theorem 4.1 in [29],
we complete the proof of necessity.

Step 3: Prove the sufficiency of Theorem 4.2.
In fact, sufficiency is implied by the proof of necessity, thus we complete the proof. O

Remark 4.3. Since the new control operator B in (3.10) makes the transformed
Problem (EP) not a standard infinite dimensional stochastic optimal control problem,
a novel equation (4.2)(d) is introduced as an adjoint equation of (4.2)(b). For the
deterministic system, the solvability of (4.2)(d) is natural, and does not need to be
proved separately. While in the stochastic system, due to the backward structure, its
solution contains two components ps(-) and ko(+), so an additional proof is required.
From the above proof, for a.e. § € [—6,0], it is equivalent to the backward SEE (4.6)
in L2}-T (©; R™), consisting of R™-valued Fp-measurable random variables £ such that
E|¢|? < 0o. Moreover, When Cy,C?(6),D;,D°(6) depend on ¢, Theorem 4.2 still holds,
i=0,---,N.

Inspired by (4.2) and (4.6), we go back to the original delayed control problem
and characterize the open-loop solvability for Problem (P).

THEOREM 4.4. Let (A1)—(A2) hold and G1o, G11 = 0. For any given initial data
(s,z,0,%) € [0,T) x 3, a(-) is an open-loop optimal control of Problem (P) if and
only if the following two conditions hold:

(i) (Stationarity condition)

M(3+500() (t) + Roo(t)u(t)

(4.12) + / [Rm(t 0) "a(t + 0)+So1 (t,0)X(t 4 0)|dI = 0, a.e. as.,

This manuscript is for review purposes only.
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where
TA(t+96) 0
M(t):=E; [/ (Slo(r, t—r)X(r) + Rio(r, t—r)a(r)—&-/_é[Ru(r, 0, t—r)u(r+6)
+S11(r,0,t — )X (r +60)]d6 + BO(t —r)"B(r) + DO(t — T)TD(T))dr

N
Floro) Y (BIB(— 69+ Dt - en)] ,
with (X (), B(-),Q(+)) sZz:tzstyz'ng the following anticipated-backward SDDE:
AX (1) = / (A(@0)X.(6) + B(d6)a,(6) ) dt
[_670]

+ / (C(dG)Xt(G)+D(d9)at(9)>dW(t), te[s 7],
[_570]
N

()= {ZAI B[ —00) L0 20, (1) + Co(t22(0) + Qoo ()X ()

=0
0

+Soo(t) Ta(t) + /

(Sw(t, 0)Ta(t+6) + Qo(t, G)TX(H—H)> df
-5

(4.13) .
+ / E,(A°(6) SB(—6) + CO(6) Tt ~6) +Quo (t-6,0)
(

t—T)V(=08) o

X X (t—0)+S01(t—0,0) "u(t—0) +/ [Q11(t—06,0",0) X (t—0+0")
-6

+511(t—90,0, 9')Tu(t—9+9’)]d0’)d9}dt — Q) dW(t), t € [s,T],
X(S) =T, X(t) = @(t_8)7 te [S_6a S)v ﬂ(t) = ¢(t_3)a te [5_67 S],
P(T) = Goo X (T).
(ii) (Convexity condition)
J(5,0,0,0;u"(-)) >0, Vu'(-) € L&(s, T;R™),
where X°(+) satisfies the following SDDE:

AXO (1) = / (A(0) X0 (0)+ B(doyu (0) ) at
5,0]

+/ (Ca0) X7 (9)+D(adyul (9) )aw(t), tels, T,
-5,0
X%t) =0, [uo(t]) =0, te€[s—4,s|.
Proof. Using the convex variational technique and applying It formula to (B(-),
XO(+)), the proof is completed, similar to the proof of Theorem 4.1 in [29]. 0
Remark 4.5. (i) From (4.1) and (4.12), an interesting thing is that if [p1(¢)]® =
B(H), [k1())° = (1) for all £ € [s,T], then M(t) = Ey([pa(1))(0)) = [pa(£))(0), thus
the stationarity conditions (4.1) and (4.12) are consistent. (ii) Theorem 4.4 is derived
similarly, when the coefficients of the state equation (2.3) are time-variant. (iii) Let
delay disappear in Problem (P). Then, Theorem 4.4 reduces to Theorem 2.3.2 in [31]
when b, 0, g, q, p=0 there. (iv) Let Problem (P) only contain pointwise delay and A;,
B;,D;=0,i=1,--- ,N—1. Then, the second equation of (4.13) is similar to (12) in [4].

5. Closed-loop representation of open-loop optimal control. In this sec-
tion, we study the solvability of an integral operator-valued Riccati equation, inspired
by which, we give the closed-loop representation of the open-loop optimal control for
Problem (P), by introducing a coupled matrix-valued Riccati equation.

DEFINITION 5.1. An open-loop optimal control u(-) of Problem (P) is said to
admit a closed-loop representation, if there exists K(-) € L?(s,T; 2 (9, R™)) such
that for any initial data (x,,%) € 3, the function
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u(t) = K(t)Z(t), t¢€ls, T,
is an open-loop optimal control of Problem (P) for (x,¢,) € 3, where Z(-) is the
solution to the following closed-loop system with Zg := (z 7,7, T)7T

(5.1) Z(t)—T(ts)Zo+/fI‘(t7*)BK(7")Z(7ﬂ)d7"+/75 T(t—r)CZ(r)dW (r),t€[s, T).

For any z € 3, consider the following integral operator-valued Riccati equation:
T
P(t)z = T(T — t)*GT(T — t)z + / T(r —t)* [C*P(r)c +Q(r)
t

(5.2) _(B*p(r))*R(r)*l(B*P(r))}T(r —t)zdr, te€[s,T),
where B* := (0, A*). The following theorem guarantees its solvability.

THEOREM 5.2. Suppose all coefficients of Problem (P) are continuous and C €
Z(3). Assume that there exists a constant p > 0 such that Roo > pu. Then, the
integral operator-valued Riccati equation (5.2) admils a unique solution in the class
of strongly continuous self-adjoint operators.

Proof. In the following, denote ||-|| «(3), ||-||3 by ||-]| for simplicity. First we show
that there exists Ty €[0,7—s], such that (5.2) admits a unique solution on [T—Tp,T].

Let B(l):= {P() [T—Tg,T]—).i”(B)‘P(-) is a strongly continuous self-adjoint
operator, sup \|P(t)||<l}. Consider the mapping: .7 : B(l)— B(l), P(-)—P(-), and

te[T—To,T]
P()= 9(15()) satisfies the following integral equation, for any z €3, t€ [T —Ty,T],
T
P(t)z = T(T — £)*GT(T — t)= + / T(r — t)*[C*P(r)C + Q(r)
(5.3) 7(B*P(?"))*tR(7‘)71(B*P(T))]T(T —t)zdr.

Then, we’ll complete the proof of this part in two steps.
Step 1: Show that .7 is well-defined.

Define 7 := T — Ty, consider the following optimal control problem:
t

Z(t) =Tt —7)2 +/ T(t — r)Bu(r)dr, te[r,T], 20 €3,

T

~ T ~ ~
oot T zasu()=[ - [(€ POCHQ)Z0).20)+ (R(yu(o).u(t)
+(GZ(T),Z(T)). )
Then, similar to Theorem 2.3 in [12], the optimal control is %(t) = —R.(t)"'B*P(t) Z(t),

23l
and the value function is V (7, z9) = (P(7)z0, 20), where P(-) satisfies (5.3). Moreover,

similar to Lemma 2.6 in [12], (5.3) is equivalent to the following equation:
T

5.0 P(t)z:T(T—t)*GTOO(T,t)z—&—/t T(T—t)*(C*ﬁ(r)C—i—Q(r))Too(r,t)zdr,

Too(r, t)z:T(r—t)z—/:r(r—ﬁ)BR(ﬁ)—lB*P(ﬁ)Too(ﬂ,t)zdﬁ,TgtgrgT.
Let Py(-) be the solution to thé following integral equation:
Py(t)z=T(T—t)*GT(T—t)>+ tTT(r—t)*(C*ﬁ(r)C—i—Q(r))T(r—t)zdr,t e [r,T).
Then, we have P(t) < Py(t). Thus, we obtain

(5:5) IIP(t)||<||G||7’2(62”T°V1)+7'2To(62”T°Vl)( sup 1Q(r )\|+ZIICIIQ>JE[T7T]7

s<r<T
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where 4" > 1 and v € R satisfying that ||T(¢)]| < ~'e?® for all t € [s T]. Choose large
enough [ and small enough Tp such that 7/2Tp(e e To V1)||C|[? < 3, and

1> 2927 V1) (To + 2) (1G]] + swp 1Q(r )H)-

Then, we have sup ||P(¢)|| <, thus .7 is well-defined.

TIS

SteR 2: Show that 7 is a contraction mapping.
Denote P(+) = Py(-}-P5(-), P(-)=Py(-)-Ps(-),and T oo(-,-)=TL(-,-)=T2(-,-). Then, we get

[Too(r, )| < M(Tp), 7<t<r<T.
Here and after, M(T}) is a generic constant, dependmg on u,Ty,| B; \ sup |BO( WGl

bup NQI®@IILILIICI. And M (Tp) increases as Ty increases. By (o 4) we have
bupTHT oo (t,T) [P < M (Tp /llP )|[*dr, sup_ |1 P(6)|[P<M (Tp) sup_ 1P(0)]2.
Chogs; T such that M (Tp) in the above 1nec\1u;hty satisfies st
(5.6) M(Ty) < 1.
Then, .7 is a contraction mapping on [T — Tp, T, thus there exists Ty such that (5.2)
admits a unique solution on [T' — Ty, T7.

Finally,we aim to show that (5.2) admits a unique solution on the whole interval [s,T].
For any z € 3 and ¢ € [T — Tp, T, consider
T

Po(t)z = T(T — 1)*GT(T — 1) + / T(r — 1) (C*Py(r)C + Q(r) ) T(r — )z

Then, for t € [T—Ty,T], ||P(t)|| <||Po(t)|| < I, where [ depends on |B;|, sup |BY8)|,
0€[—46,0]

sw[up NQMILIGILI®ILILL T, |Cll. On [T'—Ty—T1,T —To), consider the mapping
re(s,T
7, in this case, G is replaced by P(T'—Tp) in the above part. Choose small enough
Ty and large enough [ such that 72T (e>?™ v 1)||C||> <4 and I >2y2 (2T V1)(T; +

2)(I+ sup ||Q(r)|]). Then, similar to (5.5), we get for ¢ 6 [T—To—T1,T—To],

re(s,T

IPOII<IPE=T) [V Dy >442Ti (T v ) sup_ [1QE)|+UICIF) <!
thus 7 is well-defined on [T'— T — Ty, T — Tp]. Similar to (o.()), let M(T1) < 1. Then,
 is a contraction mapping on [T — T} — Ty, T — To]. Repeating the above steps, (5.2)
admits a unique solution on [s,T], which completes the proof of Theorem 5.2. 0

In the rest of this section, we consider Problem (P) with the following state
equation instead of (2 3):

[ZAX (t+6,) /AO(e) (t+0)d0+ " Bt +6,)

=0

(5.7) + L BO(0)u(t + 9)d9} dt + [COX(t) + [ Z C0)X (t + 0)db

+Dou(t) /1:)0 Jult +0)do]dw(e), € [s.T),

X(s) =z, X(t) =t —s),t €[s—20,s),u(t) =t —s),t€[s—0,s]
Tnspired by (5.2), let poo(t)g:[zv(t)(g)} ,POl(t)z/J:[P(t)(g))}?Plo(t)fz[P(t)(gﬂ |

Pyq(t) [ ( )} Then, under some proper conditions on the coefficients, (Pgo(+),

Poi(+), Pro(+),P11(+)) satisfies the following differential operator-valued Riccati equation:
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(@) Poo (t)=—A"Poo (t)—Poo (t)A— C*Poo(t) C—Q(t)+(A*Proft) )" Roolt) ™ (AProft)),
(b)P(Jl(t)Z—A*fjm(t)—Poo(f)B—Pm( JA=C *Poo(t)DJr(A*Plo( )" Roolt) (A" Ru(t)),
(¢)Pro(t) =—B* Pyo(t) — A* Pyo(t) — Pio(t) A— D* Py (t)C

+(A* P (1) Roo(t) ™! (A" Py (1)),

(d) P11(t)=—B* Py (t)— A* Py1 (t) = Pio(t) B— P11 (t) A— D* Poo(t) D

+(A*Pi1(t)) " Roo(t) " (A" Pr1 (1)),
Poo(T) = G, Py, (T) = 0, Pyo(T) = 0, Py (T) = 0.

Next we decompose (5.8), adjust some terms in the equations for Pyo(-), Poi(-),
Pi1(+), and introduce the following Riccati equations. Denote R(t) := Rgo(t) +
Do Ey(t)Dg. Then, inspired by (5.8)(a), for almost everywhere t € [s,T],0, a € [~6,0],
introduce the coupled matrix-valued Riccati equation:

(5.9)

(5.10)

Eo(t)=—Ag Eo(t)—Eo(t) Ag— E1 (t,0)—E; (£,0)' = Cq Eo(t)Co
~Quolt) + (Balt.0) + Soo() +BIEo(t) + DIE(1)C)
X9 (1) (Ba(t,0) + Soot) + By Fo(t) + D] Bt )co)
( g 0
ot o0
—Qm(t )~ C(6) En(t) Co+| Ea(t,0,6)+ Son (t, )+ By Ex(£,6)"

CO6)] 'R0 [E3(0.0)+ S0 (1) + B3 Bol(t) + DY Eo(1)C),

)El(t 0)= —E1(t.0) Ao Es(t,0,0)— [Z A;8(0 (9)] B ()

A f) Ba(t,0, 0)=—[4%0) +]_V21Ai5<o—oi>} B(t0) - Et0)[A%0)

Y Aib (a0, CUO)Eo (1) CN)-Quitcr OH{EA (£0.0)+Son(t, 0+ B F (1.6)"

+D(—)|—E0(t)00 (9)] %(t)il[Eh(tvOaa) +501(t7a) +‘B(—)rEll (taa)T+DOTEO (t)co(a):| )
Eo(T) = Goo, Er(T,0) = G10(0), E1(t,—6) = ANEo(t),

EQ(T,O,O()Z Gu(a,&), Eg(t,—é,a):A;El (t, a)TEg(t,H,—(S): E1 (t,@)AN.
inspired by (5.8)(b), introduce the coupled matrix-valued Riccati equation:

!
(gt 369)]53“9 [235 (0—0:)+B° (9)} Eo(t)—D%(0)" Eo (t)Co—E(t,0,0)

—S10(t0)+ |5 (£.0,0)+ Rao(t.0) +BJE3(t,9)T+DJEO(t)DO(e)}Tm(t)—l
x| Ba (2, 0)+Soo(t) + B Fo(t )T+D0T o(H)Co |~ Bs(t, 0) Ao,

(5555 ) Eat0.0) =] BY +ZB§0— } Ex(t,0) ~E5(6)[4°(a)

+ZA Sa— 9)}—[)() o(£)C%)—S1(t,00)+ [Es(toe)mw(t 0)+BJEs(t,0)

+DJ Eo(t)D°(0)] Rty 4 (1.0,0)+ Soi(t,0)+BJ Ex(t,0) +Do Eo(£)C° ()],
E3(T,0) = 0, Es(t,~0) = By Eo(t),

E4(T,97OZ) = Oa E4(t7 —(5,&) = Bj—l\—fEl(taa)Tv E4(ta07 _5) = E3(t70)AN
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Inspired by (5.8)(d), introduce the following matrix-valued Riccati equation:

(5.11)

o o9 0

= 2 _ 2\ E5(t,0,0) Z Bid(0 — 0;) + B°(9) TEg(t,oz)T
ot 80 O

N-1
—E3(t,9)|: Z Bié(a—Gi)—i—BO(a)} —DO(H)TEQ(t)DO(Oé) —Rll(t, «, 9)

i=1

.
+[B5(t,0,0) + D] Bo(t)D°(8) + Rao(t,0)T + BJ Bs(1,6)" |
xm(t>—1[E5(t,o,a)+Dg Eo(t)D°(a)+Ryo(t,0)+B] E3(t,a)T} ,ae. L,

E5(T, (9,04) = O7 E5(t, —(5, Oé) BNEg(t Oé) E5(t 9 (5) Eg(t G)BN,

where 0(-) is the delta function, i.e. §(#)=0 for #70 and J75.0(0)df=1. Then, we can
derive the closed-loop representation of open-loop optimal control for Problem (P).

THEOREM 5.3. Suppose all coefficients of Problem (P) are continuous and R > 0.
Let continuous functions Eo(t), E1(t,0), E2(t,0,a), Es(t,0), Es(t,0,a), E5(t,0,q),

€ s,

(5.11),

T], 0, € [=4,0], satisfy the coupled matriz-valued Riccati equations (5.9)—

and Eo(t) = Eo(t)7, Ea(t,0,a) = Ea(t,a,0) ", Es(t,0,a) = Es(t,a,0)". For

any given initial data (s,x,¢,v) € [0,T) x 3, denote

(5.12)

K(t)|e] = —wt)—l{ |Ea(t,0) + B Bo(t) + Df Eo(t)Co+ Soo ()]«

+ /O [E4(t, 0,0) + By E1(t,0)" + Soy(t,0) + DOTEo(t)CO(e)} ©(0)do

+ / Z [ES(t, 0,0) + By Bs(t,0)T + Rao(t,0)" + D Eo(t>D0<e>}¢<9)d9}.

Then, the closed-loop representation of the open-loop optimal control for Problem (P)
with the state equation (5.7), is as follows:

(5.13)

a(t) = K(t)Z(t), ae. as.,

where Z(-) satisﬁes (5.1), and the value function has the following form:
0

V(sap() ()= <>m>+2/ (4(0).E1(50)a)9

//Egsﬂa a), (0)>d9da+2/0<1/)(0)E3(30))0

+2/ / (s,0,0) dad0+/ / Bs(s,0,0)0 () 1 (0))dfdo.

Proof. Problem (P) is equivalent to Problem (EP) as noted in Remark 3.3, thus

(5.14)

u(t) = —R(t) 1{[E3t0)+3 Eo(t) + Dy E ()Co+5'oo()] (t)

+/0 [E4(t,0,0) + By B1(t,0)" + So1(t,0) + Dy Eo(t)C°(0)] X (t + 6)do
-6
0

+ / [B5(t,0,0)+Bg E3(t,0) "+ Rio(t,0) "+DJ Eo(¢)D°(0)| u(t+0)d6}, a.e. as.

-5
Then, by (2.4), we only need to prove that

Define
t) :==(Eo(t)X (1), X (1)) +2 [ (X (t+8), E1(t,0)X(t))do
-5

J(s,x,g@(~),w(~);ﬁ(~)) < J(s,x,gp(-),z/}(-);u(-)), Vu() € L]?*‘(S?T; Rm)‘

0

0

+f (Bt 0.0 X 04, Xe40)bda+2 [ (ute+0) Bae 00X (000

-8
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+2// (t40), Ea(t,0,0) X (t+a) dad0+/ / Es(t0.0)u(t +a), u(t+0))doda.

Then, by (5.7), (5.9)—(5.11) and applying It6 formula, we obtain
)

T(s, (). ()
=) +E 010 (utt) +3:0){[Ea(10) + BIEo(0)+ DI Eo(t)Co+-So 8] X (1)

+

0
[E4(t,0,0) + By E1(t,0)" + So1(t,0) + Dy Eo(t)C°(0)] X (t + 0)do
-3

+ / i [E5(t,0,0)+ By Es(t,0)" +Rio(t,0) " +Dg Eo(t)D°(8)]ult + 0)d0}>,

-6
u(t) + %(t)*l{ [E5(t,0) + By Eo(t) + Dy Eo(t)Co + Soo(t)] X (¢)

+ /05 [E4(t,0,0) + By Ex(t,0)" + So1(t,0) + Dy Eo(t)C°(0)] X (t + 0)do

+

[E5(t,0,0)+ By Es(t,0) " +Rao(t,0) " +Dg Eo(t)D°(6)]u(t + 9)d9}>dt,

—0
which completes the proof. ]

Remark 5.4. Now we study the solvability of the coupled matrix-valued Riccati
equations (5.9)—(5.11). Assume that A;,B; =0,i=1,--- ,N — 1, and Dy, Goo, G10,
G11 = 0. Then, (5.9)-(5.11) admit unique solutions. Here we just provide a sketch
of the proof, and we refer to [1] for full details of each step.

Step 1: Consider the integral forms of the coupled matrix-valued Riccati equations
(5.9)—(5.11). Then, there exists 7 > 0 such that (5.9)-(5.11) admit unique solutions
forT—7<t<T, =6 <0,aa <0. In fact, denote by M the upper bound of all
coefficients of Problem (P), and for any given I > 0, define

l) = {(EO()v El('v ')7 EQ('; E ')7 E3('7 ')7 E4('a E ')7 E5('7 K )) € C([T - T, T]; Sn)

xC([T—7,T|x[-0, O};R”X")X C([T -] x[=6, 0)%;R™ ™) x C([T—T, T)x[—4,0;R™*™)

xC([T — 7,T] x [=6,01; R™ ") x C([T — 7,T] x [~6,0]% R™*™);
te[STuETﬂEO N +1E1(8,0)|+| E2(t,0,0)|+| Es(t,0)|+| E4(t,0,0) | +| E5 (¢,0,0)| } <1}

0,ac[—5,0]
Consider the mapping 7: B(l) — B(1), (Eo(-),E1(, ), Eal, -5 ), 30, ), Eals -, ), Es (55 )
(EO( ) El( ) E2(7 7') E3( )7E4('a B ')5E5('7'7'))7 WhereEO(')7E1('a ) andEZ(‘) Nl ) sat-
isfy the integral form of (5.9):
T

(5.15)

(5.16)

and

Eo(t):/ [AJE0(3)+E0(3)A0+E1(8,0)+E1(570)T+COTE0(3)00+Q00(8)
—(E3(s70)+500(8) —‘y—BJEo(S))TRO()(S)_I(Eg(S,O)-FSOO(S)+BS—E0(S)):| ds,

B 5 (t4+0+0)AT,

El (t, 0): A;EO (t+0+5)1[—6,T—t—6) (0) +/ {* E1 (7’, t+t9*’l")A0

+Es(rt+0—7,0)+A%(t+0—7) "Eo(r)+Qio(r,t+0—7)
+CO(t+0—1)"Eo(r)Co— [Eg(r,0,t+0—1)+So1 (rt+0—7)

+BJEx(r, t+0—7) ] Roo(r) [Es(r,0) + Soo(r) + By Eo(r)]}dr,

Es(t,0,0)=ALE1(t+0+ 8,0 —0—08) 1 57, 5(0)

(t+0+3)AT,
—|—/ {Ao(t—k@—r)TEl(r,t+a—r)T—|—E1(r,t+0—r)A0(t—|—a—r)
t

+C(t+0—7)Eo(r)CO(t+a—1)+ Qi (rt+a—rt+0—r)

This manuscript is for review purposes only.



539

540
541
542
543
544
545
546
547
548
549
550

[S2ENN) B SN
o =

[S2 BTSNV

SRS IS IS B B B
ot O

(4
~

563

SOLVABILITY FOR DELAYED LQ PROBLEMS 19

—[By(r0,t+0—7)+So1(rt+0—7)+B) E1 (rt+0—7) ]TROO(T)*I
(5.17) X [Ba(r,0,t+a—7)+So1 (rt+a—r)+ By E1 (1, t+a— rﬂ}dr,a}ﬁ,

and for a <0, Ey(t,0,0) = Ey(t, o, 0) . Notice that the forms of (5.10) and (5.11) are
similar to (5.9). Then, the equations for E5(, ), F4(, -, ) and E5(,,) can be constructed
similarly to (5.16) and (5.17). Hence there exists a 7 > 0 (depending only on M, )
such that 7 is a contraction mapping. By the fixed point theorem, the coupled
matrix-valued Riccati equations (5.9)—(5.11) admit unique solutions.

Step 2: Let (Eo(-),Ea(-,),Ea(-yy ), E5(-,),Ea(-y+,),E5(+,-,-)) be the continuous solu-
tion to (5.9)—(5.11) for T—7<¢t< T and 0,a € [-6,0]. Then, Ey(-),Ex(-,),Ea-,),Es(,"),
E4(-y,),E5(-,,) satisfy Lipschitz conditions. In fact, choose |h| small enough, denote

M(ty= " sup {IE(EO)-Er(t.0+h) |+ | Ea(t0.0)~Ba(t.0+h.a)| +| Bs(t.0)
0,a€[—4,0]

—Eg(t 9+h)|—|—|E4(t 0 Oé) E4(t,9+h,04)|+|E5(t,9,a)—E5(t,0+h,Oé)|+|E2(t,9,0&)

*EQ (t597a+h) | + ‘E4 (t,0,a) *E4(t,0,0[+h) | + |E5 (t707a) 7E5 (t797a+h) |}
Then, similar to (5.15)—(5.17), there exists M’ >0 (depending only on M,7) such that

T
M(t) < M’/ M(r)dr + O(h).
t

Let h—0. Then, Eo(+),E1(-,),Eo -,y ), Es(+y+),Eul,,+), E5(-,-,) satisfy lipschitz conditions.

Step 3: Extend the solution from [T"— 7,T] to [s,T]. Then, (5.9)- (5.11) admit
unique solutions on [s, T'|. For example, on [T'—7—7,T — 7], we substitute ! with 2 in
Step 1, where 7 is the new step size. Next, we show that Eo(-),E1(-,-),Ea(:,-,-),E3(, ),
Ey(-y-,-), Es(-, -, ) satisfy Lipschitz conditions on [T'— 7 — 7,7 — 7] in Step 2. Finally,
we repeat Step 1 and Step 2 until we derive the solution on the whole interval [s, T1.

Remark 5.5. By the coupled matrix-valued Riccati equations (5.9)—(5.11), we
obtain the closed-loop representation (5.14)—a new state feedback form. Let Problem
(P) become the deterministic case, i.e. the diffusion term disappears in (5.7). Then,
(5.9)- (5.11) are similar to (2.33)—(2.38) in [12]. Moreover, Theorem 5.3 is derived
similarly, when the coefficients of the state equation (5.7) are time-variant.

6. Closed-loop solvability. In this section, we study a stochastic optimal con-
trol problem which involves only state delay not control delay. The general case is
open, due to some technical reasons, up to now. By an equivalent transformed control
problem, we define the closed-loop solvability for the original delayed control problem,
and assure it by the solvability of a differential operator-valued Riccati equation.

First we reformulate the optimal control problem as follows. Now the state equa-
tion (2.3) becomes the following SDDE:

6.1) dX(t)z[/ A(dG)Xt(GH—Bou(t)]dH-[/ C’(d&)Xt(HH—Dou(t)}dW(t), tels,T],
. [—46,0] [—46,0]
X(s)=x, X(t) p(t—s), t € [s—9,s),
where f[i&o] A(df)@(0) and f 5.0 C(d0)&(0) are defined by (2.1) and (2.2), for any
@ € £. The cost functlonjgl (2.4) becomes:

s, 60 =E [ [0 X050 42 (Qu(to) X (¢+0) X010

+/[ (Q11(t,0,0)X(t+0), X (¢t +06))do'dd + 2(Soo(t) X (t), u(t))
§,0]2

+2 / 6<S@1(t,Q)X(t+9),u(t)>d0+<Roo(t)u(t),u(t)>] dt+E[<GOOX(T),X(T)>

This manuscript is for review purposes only.



588
589
590

591

593

20 WEIJUN MENG, JINGTAO SHI, JI-.FENG ZHANG AND YANLONG ZHAO

(6.2) 42 /_ (;<G10(9)TX(T+9),X(T)>CZ0+ /[_5 0]2<G11(979’)X(T+9),X(T+9’)>d9’d6].

We restate the control problem studied in this section as follows.

Problem (P). For any (s,z,¢) € [0,T) x M, to find a u(-) € Li(s, T;R™) such
that (6.1) is satisfied and

e elRu0) = ol s e()) = Vs el)

As in Section 3, we transform the delayed state equation (6.1) in R™ into one in

M without delay. Now the transformed state equation (3.10) becomes
¢ t

(6.3)  X(H)=d(t—s)et / ®(t—r)Bu(r)dr+ / @t —r)(CX(r) + Du(r))dW(r), e [5.71,

S

where & ::(z), <I>(-),C~' are defined as (3.1) and (3.3), B, D are redefined as B:R™ —90,

w—><B8u>, and D:R™— M, ul—)(D8u>, for any w€R™. The cost (3.11) becomes

J(s,&ul) = J(s,2,0()ul-) = E{/ [(Q(t)X(t)vX(tDm
(6.4) +2(So(t)X(t),u(t)) + (Roo(t)u(t), u(t)>] dt + (GX(T), X(T)>m}.

Then we restate Problem (EP), and define the closed-loop solvability for Problem (P).
Problem (EP). For any (s,£) € 0,7) xOM, to find a u(-) € Li(s,T;R™) such
that (6.3) is satisfied and
J(S,g;ﬂ(')) = inf J(Sagau()) = V(S’E)

u(-)EL2(s,T;R™)

DEFINITION 6.1. Any K(-) € L*(s,T;.Z (M, R™)) is called a closed-loop strategy
of Problem (P) on [s,T]. For any K(-) € L?(s,T; Z(OM,R™)) and (x,p) € M, let
E= <Z>, X() = X( 58,6 K()) be the solution to the following equation:

t t
(6.5) X(t):<1>(t—s)g+/<1>(t—r)BK(r))((r)dr+/<I>(t—r)[CX(r)wK(r)X(r)}dW(r),
and
u(t) = K(t)X(t), te]sT].
Then, (X(-),u(+)) is called the outcome pair of K(-) on [s,T] corresponding to the

ingtial trajectory (x,¢); X(-), u(-) are called the corresponding closed-loop state and
closed-loop outcome control, respectively.

DEFINITION 6.2. A closed-loop strategy K(-) € L*(s,T; £ (9M,R™)) is said to be
optimal on [s,T] if

J(s,&KOX() € J(s.&u()), Vul) € Li(s, TiR™), V¢ = <¢> €M

where X(+) is the closed-loop state corresponding to (f((o)l:c,cp). If there (uniquely)

exists an optimal closed-loop strategy on [s,T], Problem (P) is said to be (uniquely)

closed-loop solvable on [s, T.

Introduce the following linear operator-valued equation:

P(t)+P(t)(A+BEK(t))+(A+BK(1))"P(t)+(C+DK(1))*P(t)(C+ DK (t))

(6.6) +Q(t)+ K (t)"Roo (t) K (£)+ K (£)"So () +So(t) K (£) =0, t € [s, T},
P(T)=aG. .

Then, we explore the necessary conditions of closed-loop solvability for Problem (P).
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THEOREM 6.3. Let (A1)-(A2) hold. Suppose K(-) is the optimal closed-loop strat-

egy of Problem (P) on [s,T]. Then,
Roo(t) + D*P(t) D a.e.,

(6.7)  [Roo(t) + D*P(t)D]K(t) + B*P(t) + D ( )C + SO( )= a.e.,
where P(-) satisfies (6.6).

Proof. For any v(-) € L&(s,T;R™) and ¢ € [s, T}, consider the following SEE:
(6.8) {d,(z(i)é[Az(t)+BK(t)z(t)+Bv(t)}dt+[C’z(t)JrDK(t)z(t)an)v(t)]dW(t),

S)=¢,

where A is defined as (3.2). Then, applying It6 formula to (P(-)z(-), z(+)) (substituting
A with its Yosida approximation Ay, and lettmg A — 00), we obtain

J(5,& K ()z() +v()) = E(P(s)¢, €>+]E/ [((Roo(t) + D* P(t) D) (t), v(t))
+2((B*P(t) + D*P(t)C + Roo(t)K (t) + So(t) + D*P(t) DK (t)) 2(t),v(t))] dt.
Since K (-) is the optimal closed-loop strategy, we have

E / T[2<(B*P(t)+D*P( t)C'+ Roo (t) K (t)+So(t )+D*P(t)DK(t))z(t),u(t)

(6.9) +((Roo(t) + D*P())D)(t),v(t) ] dt > 0, Vo(-) € L3 (s, T;R™).
In the following, we aim to prove that
(610) RO(](t) + D*P(t)D 2 0, a.e.

Suppose there exists Qy C [s,T] and |Qg| > %7 for some [ > 0, such that Roo(t) +
ﬁ*P(y)D < 0 on Qg. Without loss of generality, assume that there exists 3 > 0 such
that Roo(t) + D*P(t)D < —B1. Then, we can choose a sequence of Borel measurable
sets {Q} such that Q; C Qp and Qx| = 2. Let £ =0, vp = (VE,0,---,0) T I, (t),
and zg(-) be the corresponding solution t;) (6 8). Then, we have

k
sup Blan(®)F < ME [ [on(0)Pdt = o0 < M.
s<t<T kE+1
here and after, Misa generic constant. By (6.9), we have

0< lerr;OE/T {(Roo(t) + D*P(t) D)k (t), ve(t))dt + QkIEQOE/T ((B*P(t)
+D*P< )C+Roo( JE (1) + So(t) + D" P() D (1)) 24 (1), vi (1) ydt

k _ ) 1
’Bk+l +M k+l(/Qk|K(t)|z(m,Rm)dt> — —f, as k — oo,

which is a contradiction! Thus, (6.10) holds. It remains to prove the second equality
n (6.7). K(-) is the optimal closed-loop strategy of Problem (P) on [s,T], thus is
also optimal on [r,T] for any r € (s,T], then (6.9) holds for any r € (s,7]. Choose
EeM,v;(t)= ;U( ), v(-)ELE(s,T;R™), let z;(-) be the solution to the following SEE:
{dzg(?:[AZj( - BE (1) (t)+ By (t)]dt+[Cz () + DE () 5t y+ Dy (1)]dW (1), t € [, T,
zj(r) =¢.
Then, by (6.9), Vu(+) € L2(s, T;R™), we derive
T
(6.11) hmE <( (1)+D*P(t)C+ Roo (t) K (t)+So (t D P (t) DK (1) )z () ,v(t) Ydt= 0.
Con81der the followmg SEE:
di(t) = (/iz(t) + Bf{(t)z(t))dt + (éz(t) + Df{(t)i(t))dW(t), telrTl,
Z(r) =¢.
Then, we have

T
sup E|z;(t) — 2(t)|* < E/ lvj(t)[2dt — 0, as j — oo,
r<t<T .
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which and (6.11) imply that

E T< (B*P(t)+D*P(t)é + Roo(t) K (t) + So(t) + D*P(t)DK(t))%(t), v(t)>dt >0,

for any v(-) € L2 (s, T;R™). Choose v(t) = vl 4 (t), v € R™. Then, we deduce
1 r+e - ~ ~ -
lim - <<B*P(t)+D*P( )C'+ Roo () K (£)+ 5o ( )+D*P(t)DK(t))5,v>dt =0,

e—=0¢/,.

for any £ € M, v € R™. By the arbitrariness of £ and v, the second equality of (6.7)
holds. Hence we complete the proof. 0

Next we give the sufficient conditions of the closed-loop solvability for Problem (P).

_ THEOREM 6.4. Let (A1)~(A2) hold. Suppose Roo+D*PD > 0, R(B*P+D*PC+
So) € R(Roo + D*PD), with P(-) satisfying the Riccati equation (6.6). Here

K(t) = — (Roo(t) + Ji*P(t)D)T {B*P(t) + So(t) + D*P(t)é}

- - N\NT/~ - -
(6.12) n [I - (Roo(t) + D*P(t)D) (Roo(t) + D*P(t)D)}e(t), ae.,
for any 0(-) € L*(s, T; £ (M, R™)). Suppose K(-) € L*(s, T; L(M,R™)). Then, it is
the optimal closed-loop strategy of Problem (P), and the value function is as follows
(6.13) V(s,€) = (P(5)€, &) op
_ Proof. Denote M(t) := Roo(t)+D*P(t)D. Then, by (6.12) and R(B*P+D*PC+
So) € R(M), we derive
(6.14) M@K (t) + B*P(t) + D* P(t) 7+ So(t) =0, ae.

By (6.3) and applying It6 formula to (P(-)X(+), X(-)), we obtaln
T

)
J(s,f;u('))=1E{<P(s)£,£>+ [ [t uo-o kX0 & @xw) -2(Ero
+D*P(t)é+§0(t)>X(t),f((t)X(t)>+2<(~*P(t)+D*P(t)C+§0(t))X(t),u(t)>} dt}.

Noting (6.14), we have
—(MOE®X ), K(#)X(t) — 2< (B P(t) + D*P(#)C + O(t))X(t), K(#)X(t)
=—(MOK(®)X (), KX () )+ 2M (KX (1), KX (1) )= (M (6)K(#)X (1), K()X(t)),
which yields T

Hs () =B{(PEEO + [ (MOu) - KOXO).u(t) - KOX(0)dt).
Thus, we complete the proof. ° 0

We summarize the above discussion and characterize the closed-loop solvability
for Problem (P).

THEOREM 6.5. Let (A1)—(A2) hold. Then, K(-) is the optimal closed-loop strategy
of Problem (P) on [s,T] if and only if
(i) K(-) is given by (6.12), where P(-) satisfies the differential operator-valued Riccati
equation (6.6),

(ii) Roo + D*PD >0, R(B*P + D*PC + Sy) C R(Roo + D*PD),
(iii) K(-) € L?(s,T; (O, R™)).
In the case, the value function is given by (6.13).

Remark 6.6. In Theorem 6.5, we give some sufficient conditions for the solvability
of the Riccati equation (6.6). Moreover, we overcome the difficulties of decoupling for-
ward delayed state equations and backward advanced adjoint equations, by introduc-
ing the closed-loop strategy and the auxiliary equation (6.6). When Bg,Co,Dq,C%0)
depend on t, Theorem 6.5 is derived similarly.
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Inspired by (6.6), recall that 6(-) is the delta function, denote SR(t) := Roo(t) +
Dy Ey(t) Do, and for almost everywhere t € [s,T], 6, « € [—§,0], introduce the follow-
ing coupled matrix-valued Riccati equation:

Eo(t)+Ag Eo(t)+E(t) Ao +E1(t, 0)T+51 (,0)" +Cq Eo(t)Co+ Qoo(t)
~[Soo(t)+Bi&o(t) + Dg€a(t)Co| (1) [Suolt D+ B &ot)+D; Eo()Co] =0,
(% —%)51(15 0)+ AJEL (£.0)+Ex(t,0,0) +E (¢ [Z A;8(0 +A0(0)}
+Quo(1,8) " +Cq E(1)C°(0) - [Soo( )+ By E(t)+Dy Eo(t )CO} 0
X So1 (.0) + BIEut, e>+DJ so< )C°(6) =0,
a a9 9

= —— — )& (H0,0)+ ZAM 0)+A4°0)] & (t.0)+& (160) T[A()
ot of da

(6.15)

+ZA §(a—8; )]+CO( ) €o(t)CO(a)+Q11(t,a,0)—[501(t,0)+BOT€1(t,0)
=1
+

+DFE(NC(O) R()T|Son (t,0)+Bi&r (1,0) + D (£)C°()] =0,
E(T) = Goo, E(T,0) = Gro(0) ", &i(t,—6) = E(1)An,
E(T,0,0) =Gr1(a,0), E(t,—0,0) = ANE (t,), Ex(t,0,—8) =E1(t,0) Ay

Then, we go back to the original delayed control problem (P)7 and give a clear

characterization of its closed-loop solvability.

THEOREM 6.7. Suppose all coefficients of Problem (13) are continuous and R > 0.
Let Ey(t), E1(t,0), E2(t,0,a), t € [s,T], 0,a € [-4,0], be continuous functions satis-
fying the equation (6.15), and Ey(t) = E(t) T, Ex(t,0,a) = E(t,a,0) . Moreover,
0

(BJ &(t) + Soo(t) + D Eo(t)Co) + /_ 5 (BOT &1(t,0)
(616)  +DJ E(H)C°(0)+ S0 (t,0) ) p(B)dIE R(R(H)), Y € R, o € £,
Let K(-) € L?(s,T; Z(OM,R™)) be given by
K(t)e= —m(t)f[(BJ Eo(t)+Soo(t)+ D Eo(t)(]o)ac+/_ Z(BJ E1(t.0)+DIE(1)C°(8)
(6.17) +S01(£.0)) 9(0)db[+[1-R(&) R(D)]0(1)E, 6()eL>(s, T2 (M, R™)), Ve =(

Then, K (-) is the optimal closed-loop strategy for Problem (f’), and the value function
is as follows:

0
Vis,z,0(-))=(&(s)z, z)+2 _6<51(s, 6?)4,0(9)736>d9—|—/[_(S 0}2<€2(s, 0, ) (), (8))dads.

Proof. For any u(-) € La(s, T;R™), let X(-) be the state satisfying (6.1). Define
0
L(t):= (& (t)X(t)7X(t)>+2/<81 (tﬁ)X(t—F@LX(t))dG—i—/(Ez (t,0,0)X(t+a),X(t+0))dadb.
=5 [~5,0]2

Then, by (6.15)—(6. 17) with some computations we derive
dT (£ Qoo ()X (1) >+2/ (Quo(t,0)' X (t+6),X >d9+/ <Q11(t,9,9/)X(t+9)7

0
X (t+6'))d0'd6-+2(So0 ()X (), u(t) )+ / (So1(t,0)X (t+6),u >d9+<R00( Ju(t), u(t))

4
—{(o[uit - K (1) (X)((? ] u K0 (X)((? ). aetelsT]

Integrating both sides of which from s to T', we complete the proof. 0
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COROLLARY 6.8. Suppose all coefficients of Problem (P) are continuous. Let
Eo(t), &E1(t,0), E(t,0,a), t € [s,T], 6, € [-9,0], be continuous functions satisfying
the coupled matriz-valued Riccati equation (6.15), and R(t) = Roo(t) + DJ Eo(t) Dy >
0. Let continuous functions Ey(t), E1(t,0), Ea(t,0,a), E3(t,0), E4(t,0,a), Es(t, 0, a),
t € [s,T], O, € [—0,0], satisfy the coupled matriz-valued Riccati equations (5.9)—
(5.11). Then, go(t) :Eo(t), gl(t, 0) =E1 (t, Q)T, 52(t, 9, Oé) ZEg(t, 0, Oé)7 E3(t, 0, Oé)7 E‘4(If7
0,a), E5(t,0,0) = 0; and the closed-loop outcome control of Problem (P) is as follows:

(6.18) a(t) = KX (),

where K(-) is defined by (6.17) and X(-) is the solution to (6.5). In this case, (6.18)
is the same as the closed-loop representation of the open-loop optimal control (5.13).

Remark 6.9. Similar to Remark 5.4, let A;,D9,Goo,G10,G11 =0,i=1,---, N—1.
Then, (6.15) admits a unique solution. Theorem 6.5 assures the closed-loop solvability
for Problem (P) by the solvability of the differential operator-valued Riccati equation
(6.6). Furthermore, by the coupled matrix-valued Riccati equation (6.15), Theorem
6.7 explicitly represents the optimal closed-loop strategy K (-) using the coefficients of
the original delayed control systems. When delay disappears in Problem (15)7 Theorem
6.7 is similar to the sufficient part of Theorem 2.4.3 in [31]. When the coefficients of

the state equation (6.1) are time-variant, Theorem 6.7 also holds.

7. Concluding remarks. This paper studies the linear quadratic optimal con-
trol problem for a delayed stochastic system with both state delay and control delay
in the diffusion term. We transform it into an infinite dimensional problem with-
out delay, ensuring the open-loop solvability through a constrained forward-backward
stochastic evolution system and a convexity condition. We also provide a closed-
loop representation using a coupled matrix-valued Riccati equation and assure the
closed-loop solvability via a differential operator-valued Riccati equation, ultimately
clarifying the original delayed optimal control problem.
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