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Abstract. In this paper, a linear quadratic optimal control problem driven by a stochastic5
differential delay system is investigated, where both state delay and control delay can appear in the6
state equation, especially in the diffusion term. Three kinds of solvability for the delayed control7
problem are proposed: the open-loop solvability, the closed-loop representation of open-loop optimal8
control, the closed-loop solvability, and their necessary and sufficient conditions are obtained. The9
delayed control problem is transformed into an infinite dimensional optimal control problem without10
delay but with a new control operator. Some novel auxiliary equations are constructed to overcome11
the difficulties caused by the new control operator, because state delay and control delay coexist, and12
some stochastic analysis tools are lacking in the study of the above three kinds of solvability. The13
open-loop solvability is assured by the solvability of a constrained forward-backward stochastic evo-14
lution system and a convexity condition, or by the solvability of an anticipated-backward stochastic15
differential delay system and a convexity condition; the closed-loop representation of the open-loop16
optimal control is given via a coupled matrix-valued Riccati equation; the closed-loop solvability is17
assured by the solvability of an operator-valued Riccati equation or a coupled matrix-valued Riccati18
equation.19
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1. Introduction. Many problems can be regarded as optimal control prob-23

lems in the fields of economy, finance, aerospace, network communication and so24

on (see [3, 5, 7]). In the real world, the development of certain phenomena depends25

not only on the present state, but also on the past state trajectories. After a controller26

exerts control, it takes some time to have a practical effect on the control systems.27

Meanwhile, the development of control systems is affected by some uncertainties.28

Therefore, how to obtain the optimal control of stochastic control systems with both29

state delay and control delay, has become the core problem of control theory.30

Delayed control systems have wide background and applications (see [3,7,9,13,14,31

24,26]). For example, we consider a pension fund model introduced in [7], and modify32

it to take into account the time of implementing the portfolio strategy. Suppose that33

the manager can invest in two assets: a risky asset (e.g. stock) and a riskless asset34
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(e.g. bond). Then, the wealth equation is as follows:35 {
dx(t)=

[
rx(t)+σλu(t−δ)

]
dt−

[
q+f(x(t)−x(t− δ))

]
dt+σu(t−δ)dW (t), 0⩽ t⩽T,

x(θ) = φ(θ), u(θ) = ψ(θ), θ ∈ [−δ, 0],

where x(·) is the fund wealth, u(·) is the amount of money invested in the risky asset,36

r ⩾ 0 is the instantaneous return rate of the riskless asset, µ ⩾ r is the instantaneous37

rate of expected return of the risky asset and σ > 0 is the instantaneous rate of38

volatility. Assume that µ can be expressed by the relation µ = r + σλ, where λ ⩾ 039

is the instantaneous risk premium of the market. Compared with the classical self-40

financing portfolio model, u(t − δ) considers the time of implementing the portfolio41

strategy, and the difference q + f(x(t) − x(t − δ)) represents the external cashflows42

of contributions and benefits which enter the dynamics of the fund. The portfolio43

strategy u(t − δ) at time t − δ is executed at time t, when the asset prices and the44

fund wealth have already changed. q is the difference between the exiting cashflow45

of the aggregate benefits, paid by the fund as a minimum guarantee to its members46

in retirement, and the entering cashflow, paid by the members who are adhering to47

the fund. f is a constant, and the term f(x(t) − x(t − δ)) represents the dividends48

to members when the investment is profitable or the replenishment of cash flow when49

the investment is loss-making. φ(·) is the initial wealth or the fund donated at [−δ, 0],50

and ψ(·) is the initial investment strategy according to φ(·). The manager wants51

to achieve the expected return a, that is, he would like to minimize the following52

objective functional:53

J(φ(·), ψ(·);u(·)) = E
[
|x(T )− a|2

]
.

In the above, we use a single delay to describe the time of implementing the portfolio54

strategy. In fact, in the fields such as biology, physics and medicine, a single delay55

cannot adequately describe the dynamics of a system, multiple pointwise delays and56

distributed delay have to be used (see [13, 14, 24]), because the time required for57

plants and animals to grow and mature varies significantly, the transport and diffusion58

rates of substances are also different, and sometimes these delay effects show smooth59

changes in time, rather than instantaneous responses.60

Motivated by these practical examples, we would like to study stochastic linear61

quadratic optimal control problems with both state delay and control delay. In the62

18th century, Euler, Bernoulli, Lagrange, Laplace and Poisson firstly considered delay63

systems when studying various geometric problems. For deterministic delayed optimal64

control problems, Delfour in [6] solved a linear quadratic optimal control problem with65

pointwise and distributed state delay by the product space approach. Later, Vinter66

and Kwong in [32] reformulated a linear differential delay system with distributed67

control delay as an evolution system with bounded control operators by the structural68

state method. Ichikawa in [12] studied an optimal control problem with pointwise69

control delay by the extended state method. Subsequently, massive research results70

have been produced, such as [1,2]. Stochastic differential delay equations (SDDEs) are71

usually used to describe the dynamics of delayed stochastic systems, more references72

can be referred to [25, 26]. So far, optimal control problems of stochastic differential73

delay systems have been extensively studied. When only state delay appears in control74

systems, Flandoli in [8] transformed the delayed optimal control problem into an75

abstract one in Hilbert space, then derived the optimal feedback. Liang et al. in [19]76

applied the method of completion of squares to obtain the feedback of the optimal77

control. When only control delay appears in control systems, Wang and Zhang in [33]78

described equivalently the stochastic control systems with input delay by an abstract79
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model without delay in a Hilbert space, then derived the feedback of the optimal80

control. Zhang and Xu in [36] gave the solvability condition of the optimal control81

and the analytical controller based on a modified Riccati differential equation. For82

more literature, readers can be referred to [7, 11, 23] (for stochastic optimal control83

problems with state delay only) and [3,11,34] (for stochastic optimal control problems84

with control delay only). However, when state delay and control delay both appear in85

control systems, most literature only studied the maximum principle for the optimal86

control, and did not provide the feedback of the optimal control (see [5, 9, 17,35]).87

Recently, Sun and Yong in [29] firstly found that there is a significant difference88

between open-loop and closed-loop saddle points for a stochastic linear quadratic two-89

person zero-sum differential game. As a continuation work of [29], Sun et al. in [28]90

studied the open-loop and closed-loop solvability for stochastic linear quadratic opti-91

mal control problems, and established the equivalence between the strongly regular92

solvability of the Riccati equation and the uniform convexity of the cost functional.93

Ni et al. in [27] considered a stochastic linear quadratic problem with transmission94

delay, and characterized its solvability by Riccati-like equations and linear matrix95

equality-inequalities. As for related problems in an infinite time horizon, Sun and96

Yong in [30] discussed a stochastic linear quadratic optimal control problem with97

constant coefficients and researched the open-loop and closed-loop solvability. Li et98

al. in [18] presented a systematic theory for two-person non-zero sum differential99

games of mean-field type stochastic differential systems with quadratic performance100

in an infinite time horizon. In the aspect of infinite dimensional problems, Lü gen-101

eralized [28] to a stochastic linear quadratic optimal control problem governed by a102

stochastic evolution system in [20], and put two strict assumptions. Later Lü in [21]103

dropped them, gave the closed-loop solvability for a linear quadratic optimal control104

problem driven by a mean-field type stochastic evolution system, and improved the105

main results in [20] noticeably.106

This paper investigates a stochastic linear quadratic optimal control problem107

involving both state delay and control delay, the optimal control consists of three108

parts at least: the first one is proportional to the current value of the state, the second109

one involves an integral of the state trajectory over the past time interval, and the110

third one involves an integral of the control trajectory over the past time interval. The111

structure of the optimal control is so complex, therefore, how to define the closed-loop112

solvability for the delayed stochastic optimal control problem? After the appropriate113

definitions are introduced, how to characterize the closed-loop solvability?114

The contributions and innovations in this paper are summarized as follows:115

• A very general model is studied. Both state delay and control delay can appear116

in the state equation and the cost functional, especially in the diffusion term.117

When the original delayed system is transformed into an infinite dimensional118

control system without delay, the new control operators appear and can not119

be dealt with using the existing methods (see [8,15,16,19,33,36]). Thus, some120

new approaches are constructed to overcome the above difficulties.121

• Three kinds of solvability are proposed: the open-loop solvability, the closed-122

loop representation of the open-loop optimal control and the closed-loop solv-123

ability for the original delayed stochastic optimal control problem. To charac-124

terize them, an equivalent optimal control problem without delay is construc-125

ted, and then the open-loop and closed-loop solvability are defined.126

• Some necessary and sufficient conditions for the above three kinds of solvability127

are derived.128
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(a) The open-loop solvability is assured by the solvability of a constrained129

forward-backward stochastic evolution system and a convexity condition.130

A novel backward equation is introduced as an adjoint equation, since131

the new control operators make the transformed problem not a standard132

infinite dimensional stochastic optimal control problem, and its existence133

and uniqueness is proved by an equivalent backward stochastic evolution134

equation. Moreover, a clearer equivalence condition is deduced by going135

back to the original delayed control problem.136

(b) The closed-loop representation of the open-loop optimal control is given137

through a coupled matrix-valued Riccati equation. The transformed sto-138

chastic optimal control problem with the new control operators can not139

be approximated by infinite dimensional control problems with bounded140

control operators, due to the lack of stochastic analytic tools. An integral141

operator-valued Riccati equation is constructed to overcome the difficul-142

ties caused by the new control operators, and inspired by this, the above143

coupled matrix-valued Riccati equation is obtained.144

(c) The closed-loop solvability is assured by the solvability of a differential145

operator-valued Riccati equation. This is the first result for the closed-146

loop solvability of delayed stochastic optimal control problems. The147

difficulties are overcome through the introduction of the closed-loop strat-148

egy in decoupling forward delayed state equations and backward advanced149

adjoint equations, and sufficient conditions for the solvability of the Ric-150

cati equation are also provided. In addition, a clearer characterization of151

the closed-loop solvability is displayed by a coupled matrix-valued Riccati152

equation when going back to the original delayed control problem.153

This paper is organized as follows. Section 2 formulates the optimal control154

problem for a stochastic differential delay system. Section 3 transforms it into an155

infinite dimensional control problem without delay. Section 4 derives necessary and156

sufficient conditions for the open-loop solvability. Section 5 presents the closed-loop157

representation of the open-loop optimal control. Section 6 ensures the closed-loop158

solvability under certain conditions. Finally Section 7 gives some concluding remarks.159

2. Problem formulation. Suppose (Ω,F ,F,P) is a complete filtered probabil-160

ity space and the filtration F = {Ft}t⩾0 is generated by a one-dimensional standard161

Brownian motion {W (t)}t⩾0. Et[·] denotes the conditional expectation with respect162

to Ft, i.e. Et[·] ≡ E[ · |Ft]. First we define the following spaces which will be used in163

this paper. Let F be a closed convex subset of Rn, and E a real Banach space. Then,164

L∞(F ;E) denotes the Banach space consisting of E-valued functions ϕ(·) such that165

supt∈F ||ϕ(t)||E < ∞, H1(F ;E) denotes the Sobolev space consisting of square inte-166

grable functions with square integrable distributional derivatives Dtϕ, L
2
F(Ω;C(F ;E))167

denotes the Banach space consisting of E-valued F-adapted continuous processes ϕ(·)168

such that E[supt∈F ||ϕ(t)||2E ] < ∞, L2
F(F ;E) denotes the Hilbert space consisting of169

F-adapted processes ϕ(·) such that E
∫
F
||ϕ(t)||2Edt < ∞. When F = [a, b] ⊆ R, we170

simply denote L2(a, b;E) for L2([a, b];E) and other spaces are similar.171

Let || · ||H1 and ⟨·, ·⟩H1 denote the norm and the inner product in the Sobolev172

space H1(F ;E), similar to other spaces. For simplicity, | · | and ⟨·, ·⟩ denote the norm173

and the inner product in the Euclidean space. E′ denotes the dual space of E, and174

the symbol ⟨·, ·⟩E′,E is referred to as the duality pairing between E′ and E. Given175

two real Hilbert space U1 and U2, L (U1, U2) denotes the real Banach space of all176

continuous linear maps, when U1 = U2, we write L (U1) in place of L (U1, U2). Φ∗177
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denotes the adjoint operator of Φ ∈ L (U1, U2). Sn is the space of all n×n symmetric178

matrices, I is the identity matrix with appropriate dimension or the identity map, and179

R is the operator range or the matrix range, if no ambiguity exists. The superscript180
† represents the Moore-Penrose inverse of vectors or matrices.181

In this section, we formulate the stochastic optimal control problem.182

For given finite time duration T > 0 and given constant time delay δ > 0, let183

A(dθ) be Rn×n-valued finite measure on [−δ, 0] as follows:184

(2.1)

∫
[−δ,0]

A(dθ)φ̃(θ) :=

N∑
i=0

Aiφ̃(θi) +

∫ 0

−δ

A0(θ)φ̃(θ)dθ,185

with any square integrable function φ̃(·), and −δ = θN < θN−1 < · · · < θ1 < θ0 = 0.186

Ai and A
0 represent the pointwise delay and the distributed delay, respectively. B(dθ)187

and D(dθ) are similar to (2.1), involving Bi, B
0(·) and Di, D

0(·), respectively. The188

term about C(dθ) has the following form:189

(2.2)

∫
[−δ,0]

C(dθ)φ̃(θ) := C0φ̃(0) +

∫ 0

−δ

C0(θ)φ̃(θ)dθ.190

For given s ∈ [0, T ), consider the following controlled linear SDDE:191

(2.3)



dX(t) =

∫
[−δ,0]

(
A(dθ)Xt(θ)+B(dθ)ut(θ)

)
dt

+

∫
[−δ,0]

(
C(dθ)Xt(θ)+D(dθ)ut(θ)

)
dW (t), t ∈ [s, T ],

X(s) = x, X(t) = φ(t− s), t ∈ [s− δ, s),
u(t) = ψ(t− s), t ∈ [s− δ, s],

192

along with the cost functional as follows:193

J(s, x, φ(·), ψ(·);u(·))= E
{∫ T

s

[ ∫
[−δ,0]2

⟨Q(t, dθdθ′)Xt(θ), Xt(θ
′)⟩194

+2⟨S(t, dθdθ′)Xt(θ), ut(θ
′)⟩+ ⟨R(t, dθdθ′)ut(θ), ut(θ′)⟩

]
dt195

+

∫
[−δ,0]2

⟨G(dθdθ′)XT (θ), XT (θ
′)⟩

}
.(2.4)196

Here, X(·) is the state and u(·) ∈ L2
F(s, T ;Rm) is the control. x is the initial197

state, φ(·) ∈ L2(−δ, 0;Rn) and ψ(·) ∈ L2(−δ, 0;Rm) are the initial trajectories of198

the state and the control, respectively. Xt(·) := X(t + ·) and ut(·) := u(t + ·),199

represent the past trajectories of the state and the control. In the cost functional200

(2.4), Q(t, dθdθ′) and S(t, dθdθ′) are also finite measures, involving Q00(·), Q10(·, ·),201

Q11(·, ·, ·) and S00(·), S01(·, ·), S10(·, ·), S11(·, ·, ·), respectively:202 ∫
[−δ,0]2

⟨Q(t, dθdθ′)φ̃(θ), φ̃(θ′)⟩ :=
∫
[−δ,0]2

〈
Q11(t, θ, θ

′)φ̃(θ), φ̃(θ′)
〉
dθ′dθ

+
〈
Q00(t)φ̃(0), φ̃(0)

〉
+ 2

∫ 0

−δ

〈
Q10(t, θ)

⊤φ̃(θ), φ̃(0)
〉
dθ, ∀φ̃ ∈ L2(−δ, 0;Rn),∫

[−δ,0]2
⟨S(t, dθdθ′)φ̃(θ), ψ̃(θ′)⟩ :=

〈
S00(t)φ̃(0), ψ̃(0)

〉
+

∫ 0

−δ

〈
S01(t, θ)φ̃(θ), ψ̃(0)

〉
dθ +

∫ 0

−δ

〈
S10(t, θ)

⊤ψ̃(θ), φ̃(0)
〉
dθ

+

∫
[−δ,0]2

〈
S11(t, θ, θ

′)φ̃(θ), ψ̃(θ′)
〉
dθ′dθ, ∀φ̃ ∈ L2(−δ, 0;Rn), ψ̃ ∈ L2(−δ, 0;Rm),

R(t,dθdθ′) and G(dθdθ′) are similar to Q(t,dθdθ′), involving R00(·),R10(·, ·), R11(·, ·, ·)203

and G00,G10(·),G11(·, ·). In the above, Ai,C0,G00∈Rn×n, Bi, Di∈Rn×m, i=0, · · · , N ,204

A0(·),B0(·),C0(·),D0(·),Q00(·),Q10(·, ·),Q11(·, ·, ·),S00(·),S01(·, ·),S10(·, ·),S11(·, ·, ·),R00(·),205

R10(·, ·),R11(·,·,·),G10(·),G11(·, ·) are matrix-valued functions of appropriate dimensions.206
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Let us assume the following:207

(A1) The coefficients of the state equation (2.3) satisfy the following assumptions:208

A0(·), C0(·) ∈ L∞(0, T ;Rn×n), B0(·), D0(·) ∈ L∞(0, T ;Rn×m).

(A2) The coefficients of the cost functional (2.4) satisfy the following assumptions:209

Q00(·) ∈ L∞(0, T ;Sn), Q10(·, ·) ∈ L∞([0, T ]× [−δ, 0];Rn×n),

Q11(·, ·, ·) ∈ L∞([0, T ]× [−δ, 0]× [−δ, 0];Rn×n), S00(·) ∈ L∞(0, T ;Rm×n),

S01(·, ·) ∈ L∞([0, T ]× [−δ, 0];Rm×n), S10(·, ·) ∈ L∞([0, T ]× [−δ, 0];Rm×n),

S11(·, ·, ·) ∈ L∞([0, T ]× [−δ, 0]× [−δ, 0];Rm×n), R00(·) ∈ L∞(0, T ;Sm),

R10(·, ·)∈L∞([0, T ]×[−δ, 0];Rm×m), R11(·, ·, ·)∈L∞([0, T ]×[−δ, 0]×[−δ, 0];Rm×m),

G10(·, ·) ∈ L∞([0, T ]× [−δ, 0];Rn×n), G11(·) ∈ L2(−δ, 0;Rn×n), G00 ∈ Sn.
Q11(t, θ, θ

′)⊤ = Q11(t, θ
′, θ), R11(t, θ, θ

′)⊤ = R11(t, θ
′, θ), G11(θ, θ

′)⊤ = G11(θ
′, θ).

We choose the product space M := Rn × L2(−δ, 0;Rn) as the space of initial data,210

which is a Hilbert space endowed with inner product and norm211

⟨x, y⟩M := ⟨x0, y0⟩+
∫ 0

−δ

⟨x1(θ), y1(θ)⟩dθ, and ||x||M := ⟨x, x⟩
1
2

M,

∀x =

(
x0

x1

)
, y =

(
y0

y1

)
, x0, y0 ∈ Rn, x1, y1 ∈ L2(−δ, 0;Rn).

Under Assumptions (A1)–(A2), for any initial data (s, x, φ, ψ) ∈ [0, T )×M×L2(−δ, 0;212

Rm) and any admissible control u(·) ∈ L2
F(s, T ;Rm), by the Picard iteration method213

or by Theorem 2.1 ( [25], Chapter II), the SDDE (2.3) admits a unique solution X(·)≡214

X(·; s,x,φ,ψ,u(·))∈L2
F(Ω;C([s,T ];Rn)),therefore the cost functional (2.4) is meaningful.215

Problem (P). For any (s, x, φ, ψ) ∈ [0, T )×M×L2(−δ, 0;Rm), to find a ū(·) ∈216

L2
F(s, T ;Rm) such that (2.3) is satisfied and217

J(s, x, φ(·), ψ(·); ū(·)) = inf
u(·)∈L2

F(s,T ;Rm)
J(s, x, φ(·), ψ(·);u(·)) := V (s, x, φ(·), ψ(·)).

Any ū(·) ∈ L2
F(s, T ;Rm) that achieves the above infimum is called an opti-218

mal control for the initial data (s, x, φ, ψ), and the corresponding solution X̄(·) ≡219

X(· ; s, x, φ, ψ, ū(·)) is called the optimal state. The function V (·, ·, ·, ·) is called the220

value function of Problem (P).221

3. Problem transformation. In this section, inspired by [6] and [12], we study222

Problem (P) by a control problem without delay, containing a new control operator.223

Define the C0-semigroup Φ(·) as follows:224

Φ(t) : M −→ M225

ξ 7→
(
x(t)
xt(·)

)
, ∀ξ :=

(
x
φ

)
∈ M,(3.1)226

where x(·) ≡ x(· ; s, x, φ) is the solution to the following equation:227  ẋ(t) =

∫
[−δ,0]

A(dθ)xt(θ), a.e. t ∈ [0, T ],

x(0) = x, x(t) = φ(t), t ∈ [−δ, 0),
with xt(·) := x(t+ ·). The generator of Φ(·) is defined as228

Ã : D(Ã) −→ M229

ξ 7→
(∫

[−δ,0]
A(dθ)φ(θ)

φ̇(·)

)
, ∀ξ ∈ D(Ã),(3.2)230

and its domain is D(Ã) =
{
ξ = (x⊤, φ⊤)⊤ ∈ M| φ(·) ∈ H1(−δ, 0;Rn), x = φ(0)

}
. As231

mentioned in [6], D(Ã) is dense in M and is a Banach space endowed with the norm232

||ξ||D(Ã) := ||φ(·)||H1 . Denote L := L2(−δ, 0;Rm) and define the following operators:233
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B̃ :L−→M D̃ :L−→M C̃ :M−→M234

ψ 7→
(∫

[−δ,0]
B(dθ)ψ(θ)

0

)
, ψ 7→

(∫
[−δ,0]

D(dθ)ψ(θ)

0

)
,

(
x
φ

)
7→
(
C0x+

∫ 0

−δ
C0(θ)φ(θ)dθ

0

)
.(3.3)235

Then, C̃ ∈ L (M), but B̃, D̃ /∈ L (L,M). Thus, we can write (2.3) in Rn as the236

following stochastic evolution equation (SEE) in M:237

(3.4)

 dX(t) = [ÃX(t) + B̃ut]dt+ [C̃X(t) + D̃(t)ut]dW (t), t ∈ [s, T ],

X(s) = ξ =

(
x
φ

)
, u(t) = ψ(t− s), t ∈ [s− δ, s].

238

By Theorem 3.14 in [22], the SEE (3.4) has a unique solution. If we regard X(·) as239

the new state, then (3.4) does not contain state delay. Before dealing with control240

delay, we give the following result to illustrate the equivalence of (2.3) and (3.4).241

Lemma 3.1. Let (A1)–(A2) hold. For all ξ ∈ M, ψ(·) ∈ L, u(·) ∈ L2(s, T ;Rm),242

assume that X(·) is the solution to (2.3). Then, X(·) defined as X(t) :=

(
X(t)
Xt(·)

)
, is243

the mild solution to (3.4), i.e.244

(3.5) X(t)=Φ(t−s)ξ+
∫ t

s

Φ(t−r)B̃urdr+
∫ t

s

Φ(t−r)
[
C̃X(r)+D̃ur

]
dW (r), t∈ [s,T ].245

Furthermore, there exists a constant M > 0 such that246

E
[

sup
s⩽t⩽T

||X(t)||2M
]
≤M

[
|x|2 +

∫ 0

−δ

(|φ(θ)|2 + |ψ(θ)|2)dθ + E
∫ T

s

|u(r)|2dr
]
.

The proof is similar to Theorem 2.3 in [8], and thus is omitted here.247

Remark 3.2. From Lemma 3.1, the SDDE (2.3) is equivalent to the SEE (3.5).248

When C0, C
0(θ), Di, D

0(θ) depend on t, Lemma 3.1 holds, i = 0, · · · , N . When (2.2)249

contains multiple pointwise delays, Lemma 3.1 also holds, see Pages 941–943 in [8].250

Next we deal with control delay, introduce the semigroup of left translation:251

L(t) : L −→ L252 [
L(t)Y

]
(θ) :=


{
Y (t+ θ), −δ ≤ θ ≤ −t,
0, −t < θ ≤ 0,

if t ≤ δ,

0, −δ ≤ θ ≤ 0, if t > δ.

(3.6)253

Its generator is given by A : D(A) −→ L, AY := dY
dθ , ∀Y ∈ D(A). The domain254

D(A) =
{
Y ∈ H1(−δ, 0;Rm)| Y is absolutely continuous and Y (0) = 0

}
, is a Banach255

space endowed with the norm || · ||H1 . Denote V := H1(−δ, 0;Rm), let V ′ be the dual256

of V , and consider the following evolution equation:257

(3.7) Yt = L(t− s)ψ +

∫ t

s

L(t− r)∆u(r)dr, t ∈ [s, T ],258

with the bounded linear operator ∆ : Rm −→ V ′, ⟨∆u,w⟩V ′,V := ⟨u,w(0)⟩, ∀ u ∈259

Rm, w ∈ V. Then, by Lemma 1.1 in [12], (3.7) is well-defined and260

(3.8) Yt(θ) =


{
u(t+ θ), s− t < θ ≤ 0,
ψ(θ + t− s), −δ ≤ θ ≤ s− t,

if t− s ≤ δ,

u(t+ θ), −δ ≤ θ ≤ 0, if t− s > δ.

261

By (3.8), we get Yt(θ) = ut(θ) for almost everywhere θ ∈ [−δ, 0] and all t ∈ [s, T ].262

Therefore, (3.5) can be written as the following formula, equivalent to (2.3):263

(3.9)


X(t)=Φ(t−s)ξ+

∫ t

s

Φ(t−r)B̃Yrdr+

∫ t

s

Φ(t−r)
[
C̃X(r)+D̃Yr

]
dW (r), t∈ [s,T ],

Yt=L(t−s)ψ+
∫ t

s

L(t−r)∆u(r)dr, t ∈ [s, T ].

264
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Denote Z :=M×L, for any z =

(
ξ
ψ

)
, z1 =

(
ξ1
ψ1

)
and z2 =

(
ξ2
ψ2

)
∈ Z, ∥z∥Z :=265 [

∥ξ∥2M+∥ψ∥2L
] 1

2 , ⟨z1, z2⟩Z:=⟨ξ1, ξ2⟩M+⟨ψ1, ψ2⟩L. Define the following C0-semigroup:266

T(t) : Z −→ Z

T(t)

(
ξ
ψ

)
:=

[
Φ(t)ξ +

∫ t

0
Φ(t− r)B̃L(r)ψdr
L(t)ψ

]
,

and Z0 :=

(
ξ
ψ

)
,Z(·) :=

(
X(·)
Y·

)
,B :=

(
0
∆

)
,C :=

(
C̃ D̃
0 0

)
. Then, (3.9) can be written as267

(3.10) Z(t) = T(t− s)Z0 +

∫ t

s

T(t− r)Bu(r)dr +

∫ t

s

T(t− r)CZ(r)dW (r).268

NotingC/∈L (Z), Bmaps Rm toM×V ′ out Z, thusB/∈L (Rm,Z), the above integration269

is not defined in Z, (3.10) is just a formal expression and it actually means (3.9).270

Now we have transformed the original delayed state equation (2.3) into the new271

state equation (3.10) (or (3.9)), containing neither state delay nor control delay.272

Next we rewrite the cost functional (2.4) by Z(·) and u(·), before that we define273

some bounded linear operators. Recalling L:=L2(−δ, 0;Rm), we also denote L2(−δ, 0;274

Rn) by L for ease of writing, and the dimension depends on the specific situation.275

Denote κ̃00(t)x̃ = κ00(t)x̃, κ̃01(t)φ̃ :=
∫ 0

−δ
κ01(t, θ)φ̃(θ)dθ, (κ̃10(t)x̃)(·) := κ10(t, ·)x̃,276

(κ̃11(t)φ̃)(·) :=
∫ 0

−δ
κ11(t, θ, ·)φ̃(θ)dθ, for any x̃ ∈ Rd, φ̃ ∈ L, d = n,m, where κ =277

Q,S,R,G,Q01(t, θ)=Q10(t, θ)
⊤, R01(t, θ)=R10(t, θ)

⊤, G01(θ)=G10(θ)
⊤. Then, Q̃01(t)

∗=278

Q̃10(t), R̃01(t)
∗=R̃10(t), G̃

∗
01=G̃10. Notice that S̃01(t)

∗= S̃10(t) is not always true. Let279

Q̃(t):=

[
Q̃00(t) Q̃01(t)

Q̃10(t) Q̃11(t)

]
, S̃(t):=

[
S̃00(t) S̃01(t)

S̃10(t) S̃11(t)

]
, R̃(t):=

[
R̃00(t) R̃01(t)

R̃10(t) R̃11(t)

]
, G̃:=

[
G̃00 G̃01

G̃10 G̃11

]
.

Then, we rewrite the cost functional (2.4) as follows280

J(s, x, φ(·), ψ(·);u(·))=E
∫ T

s

[〈
Q̃(t)X(t),X(t)

〉
+2

〈
S̃(t)X(t),

(
u(t)
Yt

)〉
281

+
〈
R̃(t)

(
u(t)
Yt

)
,

(
u(t)
Yt

)〉]
dt+ E

〈
G̃X(T ),X(T )

〉
.(3.11)282

In the above, ⟨·, ·⟩ has the different meaning.283

Define284

S̃0(t) :=
[
S̃00(t) S̃01(t)

]
, S̃1(t) :=

[
S̃10(t) S̃11(t)

]
, S(t) :=

[
S̃0(t) R̃01(t)

]
,

Q(t) :=

[
Q̃(t) S̃1(t)

∗

S̃1(t) R̃11(t)

]
, G :=

[
G̃ 0

0 0

]
, R(t) := R̃00(t).

Then, we rewrite (3.11) like this:285

J(s,Z0;u(·)) = E
∫ T

s

[〈
Q(t)Z(t),Z(t)

〉
Z
+2

〈
S(t)Z(t), u(t)

〉
286

+
〈
R(t)u(t), u(t)

〉]
dt+ E

〈
GZ(T ),Z(T )

〉
Z
,(3.12)287

thus we transform Problem (P) into a linear quadratic problem associated with (3.10)288

(or (3.9)) and (3.12), and we formulate it specifically as follows.289

Problem (EP). For any (s,Z0) ∈ [0, T )× Z, to find a ū(·) ∈ L2
F(s, T ;Rm) such290

that (3.10) (or (3.9)) is satisfied and291

(3.13) J(s,Z0; ū(·)) = inf
u(·)∈L2

F(s,T ;Rm)
J(s,Z0;u(·)) := V (s,Z0).292

Similarly, any ū(·) ∈ L2
F(s, T ;Rm) that achieves the above infimum is called an293

optimal control for the initial pair (s,Z0), and the corresponding solution Z̄(·) is called294

the optimal state. The function V (·, ·) is called the value function of Problem (EP).295
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Remark 3.3. By (3.7), (3.8), (3.9) and Remark 3.2, Problem (P) is equivalent296

to Problem (EP). When C0, C
0(θ), Di, D

0(θ) depend on t, the equivalence also holds,297

i=0, · · ·, N . We transform the delayed finite dimensional Problem (P) into the infinite298

dimensional Problem (EP) without delay, containing the new control operator B. It299

is worth mentioning that the unboundedness of B is as high as that studied by [15,16],300

but its domain does not have a relation to that of the semigroup generator. Therefore,301

the existing approaches in the literature do not apply. In the rest section, we will take302

some new methods to address the unboundedness of the control operator.303

4. Open-loop solvability. In this section, we define the open-loop solvability304

for Problem (P) by the transformed Problem (EP), and assure it by the solvability of a305

constrained forward-backward stochastic evolution system and a convexity condition.306

Finally we turn back to the original Problem (P) and explore its open-loop solvability.307

First we give the definition of the open-loop solvability for Problem (P).308

Definition 4.1. Problem (P) is said to be309

(i) (uniquely) open-loop solvable at initial data (s, x, φ, ψ) ∈ [0, T ] × Z, if there310

exists a (unique) ū(·) ∈ L2
F(s, T ;Rm) satisfying (3.13).311

(ii) (uniquely) open-loop solvable at some s ∈ [0, T ), if for any (x, φ, ψ) ∈ Z,312

there exists a (unique) ū(·) ∈ L2
F(s, T ;Rm) satisfying (3.13).313

(iii) (uniquely) open-loop solvable on [s, T ), if it is (uniquely) open-loop solvable314

at all t ∈ [s, T ).315

Next we give the necessary and sufficient condition of the open-loop solvability.316

Theorem 4.2. Let (A1)–(A2) hold. For any given initial data (s, x, φ, ψ) ∈317

[0, T ) × Z, ū(·) is an open-loop optimal control of Problem (P) if and only if the318

following two conditions hold:319

(i) (Stationarity condition)320

(4.1) S̃0(t)X̄(t) + R̃01(t)Ȳt + R̃00(t)ū(t) + [p2(t)](0) = 0, a.e. a.s.,321

where (X̄(·), Ȳ·, p1(·), k1(·), p2(·), k2(·)) ∈ L2
F(Ω;C([s, T ];M)) × L2

F(Ω;C([s, T ];L)) ×322

L2
F(Ω;C([s, T ];M))×L2

F(s, T ;M)×L2
F(Ω;C([s, T ];L))×L2

F(s, T ;L) is the solution to323

the following forward-backward SEE:324

(4.2)



(a) X̄(t) = Φ(t− s)ξ +

∫ t

s

Φ(t− r)B̃Ȳrdr

+

∫ t

s

Φ(t− r)
(
C̃X̄(r) + D̃Ȳr

)
dW (r), t ∈ [s, T ],

(b) Ȳt = L(t− s)ψ +

∫ t

s

L(t− r)∆ū(r)dr, t ∈ [s, T ],

(c) p1(t)=Φ(T−t)∗G̃X̄(T )+

∫ T

t

Φ(r−t)∗
[
C̃∗k1(r)+Q̃(r)X̄(r)+S̃0(r)

∗ū(r)

+S̃1(r)
∗Ȳr

]
dr−

∫ T

t

Φ(r − t)∗k1(r)dW (r), t ∈ [s, T ],

(d) [p2(t)](θ) =

∫ T∧(t+δ+θ)

t

[
S̃1(r)X̄(r)+R̃01(r)

∗ū(r)+R̃11(r)Ȳr

]
(t+θ−r)dr

+

∫
[−δ,0]

(
B(dβ)⊤[p1(t+θ−β)]0+D(dβ)⊤[k1(t+θ−β)]0

)
1[t+θ−T,θ](β)

−
∫ T∧(t+δ+θ)

t

[k2(r)](t+θ−r)dW (r), t ∈ [s, T ], θ ∈ [−δ, 0],

325

with ξ=
(
x⊤, φ⊤)⊤. [p1(r)]

0,[k1(r)]
0∈Rn denote the Rn components of p1(r) and k1(r).326
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(ii) (Convexity condition)327

(4.3) J(s, 0;u0(·)) ⩾ 0, ∀u0(·) ∈ L2
F(s, T ;Rm),328

where (X0(·),Y0
· ) is the solution to the following integral equation:329 

X0(t) =

∫ t

s

Φ(t− r)B̃Y0
rdr +

∫ t

s

Φ(t− r)
(
C̃X0(r) + D̃Y0

r

)
dW (r), t ∈ [s, T ],

Y0
t =

∫ t

s

L(t− r)∆u0(r)dr, t ∈ [s, T ].

Proof. We split the proof into three steps as follows.330

Step 1: For given ū(·) ∈ L2
F(s, T ;Rm), show that the forward-backward SEE331

(4.2) admits a unique solution.332

By Theorem 4.10 in [22], (p1(·), k1(·)) ∈ L2
F(Ω;C([s, T ];M))×L2

F(s, T ;M). It remains333

to prove that (4.2)(d) admits a unique solution (p2(·), k2(·)) ∈ L2
F(Ω;C([s, T ];L)) ×334

L2
F(s, T ;L) for given (X̄(·), Ȳ·, p1(·), k1(·)). Notice that B̃, D̃ ∈ L (D(A),M). Then,335

for any κ ∈ D(A),336 〈∫ T

t

L(r−t)∗B̃∗p1(r)dr, κ
〉
⟨D(A)′,D(A)⟩

=

∫ T

t

〈
B̃∗p1(r),L(r−t)κ

〉
⟨D(A)′,D(A)⟩dr

=

∫ T

t

⟨p1(r),B̃L(r−t)κ⟩Mdr=
∫ 0

−δ

〈∫
[−δ,0]

B(dθ)⊤[p1(r+t−θ)]01[t+r−T,r](θ), κ(r)
〉
dr,

it follows that337

(4.4)
(∫ T

t

L(r − t)∗B̃∗p1(r)dr
)
(θ)=

∫
[−δ,0]

B(dβ)⊤[p1(t+ θ − β)]01[t+θ−T,θ](β).338

Similarly, we have339

(4.5)
(∫ T

t

L(r − t)∗D̃∗k1(r)dr
)
(θ)=

∫
[−δ,0]

D(dβ)⊤[k1(t+ θ − β)]01[t+θ−T,θ](β).340

By (3.6) and Lemma 3.3 in [7], (4.2)(d) is equivalent to the following backward SEE:341

p̃2(t)=

∫ T

t

L(r−t)∗
[
B̃∗p1(r)+D̃

∗k1(r)+S̃1(r)X̄(r)+R̃11(r)Ȳr342

+R̃01(r)
∗ū(r)

]
dr −

∫ T

t

L(r−t)∗k̃2(r)dW (r), t ∈ [s, T ].(4.6)343

Next we would like to prove that (4.6) admits a unique solution (p̃2(·), k̃2(·)) ∈344

L2
F(Ω;C([s, T ];L))× L2

F(s, T ;L), and we only need to prove the existence. Denote345

p̃2(t) :=Et

[∫ T

t

L(r−t)∗
(
B̃∗p1(r)+D̃

∗k1(r)+S̃1(r)X̄(r)+R̃11(r)Ȳr+R̃01(r)
∗ū(r)

)
dr

]
.

Then, we have346

p̃2(t)=Et

[∫
[−δ,0]

(
D(dβ)⊤[k1(t+·−β)]0+B(dβ)⊤[p1(t+·−β)]0

)
1[t+·−T,·](β)

]
+Et

[∫ T

t

L(r−t)∗
(
S̃1(r)X̄(r)+R̃11(r)Ȳr+R̃01(r)

∗ū(r)
)
dr

]
:=I(t)+II(t).

Let L2(s,T ;L2
F(s,T ;L)) be the Banach space of all strongly B([s,T ])⊗B([s,T ])⊗FT -347

measurable functions h : [s,T ]2×Ω→L, satisfying that for r∈ [s,T ], h(r, ·) is F-adapted348

and E
∫ T

s

∫ T

s
||h(r,β)||2L2dβdr<∞. Notice that S̃1(·)X̄(·)+R̃11(·)Ȳ·+R̃01(·)∗ū(·)∈L2

F(s,T ;349

L). Then, by Corollary 2.149 in [22], there exists h(·,·)∈L2(s,T ;L2
F(s,T ;L)) such that350

II(t)=

∫ T

t

L(r−t)∗
{(
S̃1(r)X̄(r)+R̃11(r)Ȳr+R̃01(r)

∗ū(r)
)
−
∫ r

t

h(r,β)dW (β)
}
dr, t∈ [s,T ],

which yields351
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II(t) =

∫ T

t

L(r − t)∗
(
S̃1(r)X̄(r) + R̃11(r)Ȳr + R̃01(r)

∗ū(r)
)
dr

−
∫ T

t

L(r − t)∗
∫ T

r

L(β − r)∗h(β, r)dβdW (r).

For I(t), we have352

[I(t)](θ)=Et

[ N∑
i=0

(
D⊤

i [k1(t+θ−θi)]0+B⊤
i [p1(t+θ−θi)]0

)
1[t+θ−T,θ](θi)353

+

∫ 0

−δ

(
D0(β)⊤[k1(t+θ−β)]0+B0(β)⊤[p1(t+θ−β)]0

)
1[t+θ−T,θ](β)dβ

]
.(4.7)354

Since [p1(·)]0, [k1(·)]0 ∈ L2
F(s, T ;Rn), by Corollary 2.149 in [22], there exists h̃(·, ·),355

˜̃
h(·, ·) ∈ L2(s, T ;L2

F(s, T ;Rn)) such that for almost everywhere τ ∈ [t, T ],356

[p1(τ)]
0=Et[p1(τ)]

0+

∫ τ

t

h̃(τ,r)dW (r), [k1(τ)]
0=Et[k1(τ)]

0+

∫ τ

t

˜̃
h(τ,r)dW (r),

which and (4.7) yield that for almost everywhere θ ∈ [−δ, 0],357

[I(t)](θ)=

[ N∑
i=0

(
D⊤

i [k1(t+θ−θi)]0+B⊤
i [p1(t+θ−θi)]0

)
1[t+θ−T,θ](θi)

+

∫ 0

−δ

(
D0(β)⊤[k1(t+θ−β)]0 +B0(β)⊤[p1(t+θ−β)]0

)
1[t+θ−T,θ](β)dβ

]
−
∫ T∧(t+δ+θ)

t

[ N∑
i=0

(
B⊤

i h̃(t+θ−θi, r)+D⊤
i
˜̃
h(t+θ−θi, r)

)
1[t+θ−T,t+θ−r](θi)

+

∫ 0

−δ

(
D0(β)⊤

˜̃
h(t+θ−β, r)+B0(β)⊤̃h(t+θ−β, r)

)
1[t+θ−T,t+θ−r](β)dβ

]
dW (r).

Define358

[k̃(r)](θ) :=

N∑
i=0

(
D⊤

i
˜̃
h(r + θ − θi, r) +B⊤

i h̃(r + θ − θi, r)
)
1[r+θ−T,θ](θi)

+

∫ 0

−δ

(
D0(β)⊤

˜̃
h(r+θ−β, r) +B(β)⊤h̃(r+θ−β, r)

)
1[r+θ−T,θ](β)dβ.

Then, by (4.4) and (4.5), we obtain359

I(t) =

∫ T

t

L(r − t)∗
(
D̃∗k1(r) + B̃∗p1(r)

)
dr −

∫ T

t

L(r − t)∗k̃(r)dW (r).

Let360

k̃2(r) :=

∫ T

r

L(β − r)∗h(β, r)dβ + k̃(r).

Then, (p̃2(·), k̃2(·)) satisfies (4.6). Notice that (p1(·), k1(·)) ∈ L2
F(Ω;C([s, T ];M)) ×361

L2
F(s, T ;M), h(·, ·) ∈ L2(s, T ;L2

F(s, T ;L)) and h̃(·, ·), ˜̃h(·, ·) ∈ L2(s, T ;L2
F(s, T ;Rn)).362

Then, we have (p̃2(·), k̃2(·))∈L2
F(Ω;C([s, T ];L)) ×L2

F(s, T ;L).363

Step 2: Prove the necessity of Theorem 4.2.364

Applying (3.3) and Theorem 3.3 in [10], we have365

E
∫ T

s

(
⟨p1(t), B̃Y0

t ⟩M+⟨k1(t), D̃Y0
t ⟩M

)
dt

= E
∫ T

s

⟨X0(t), Q̃(t)X̄(t)+S̃1(t)
∗Ȳt+S̃0(t)

∗ū(t)⟩Mdt+E⟨G̃X̄(T ),X0(T )⟩M.
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Noting for any f(·) ∈ L2
F(s, T ;L), we have366

E
∫ T

s

〈
Y0

t , f(t)
〉
L2dt =E

∫ T

s

〈
u0(t),

∫ T∧(t+δ)

t

[f(r)](t−r)dr
〉
dt.(4.8)367

By k2(·) ∈ L2
F(s, T ;L), we deduce368

E
∫ 0

−δ

∫ s

s+θ

|[k2(t− θ)](θ)|2dtdθ + E
∫ 0

−δ

∫ T+θ

s

|[k2(t− θ)](θ)|2dtdθ

= E
∫ 0

−δ

∫ T+θ

s+θ

|[k2(t− θ)](θ)|2dtdθ = E
∫ T

s

∫ 0

−δ

|[k2(r)](θ)|2dθdr <∞,

which implies that369

E
∫ T∨(t+δ)

t

|[k2(r)](t− r)|2dr <∞, a.e. t ∈ [s, T ].

Thus, we obtain370

(4.9) E
∫ T

s

〈
u0(t),

∫ T∧(t+δ)

t

[k2(r)](t−r)dW (r)
〉
dt=E

∫ T

s

〈
u0(t),Et

∫ T∧(t+δ)

t

[k2(r)](t− r)dW (r)
〉
dt=0.371

By the definition of B̃, we derive372

E
∫ T

s

〈
p1(t), B̃Y0

t

〉
M
dt = E

∫ T

s

〈
[p1(t)]

0,

N∑
i=0

Biu
0(t+θi)373

×1(s−t,0](θi) +

∫ 0

−δ

B0(β)u0(t+ β)1(s−t,0](β)dβ
〉
dt374

=E
∫ T

s

〈
u0(t),

∫
[−δ,0]

B(dβ)⊤[p1(t−β)]01[t−T,0](β)
〉
dt.(4.10)375

By the definition of D̃, we obtain376

(4.11) E
∫ T

s

〈
k1(t), D̃Y0

t

〉
M
dt=E

∫ T

s

〈
u0(t),

∫
[−δ,0]

D(dβ)⊤[k1(t−β)]01[t−T,0](β)

〉
dt.377

By (4.8)–(4.11) and applying the convex variation technique in Theorem 4.1 in [29],378

we complete the proof of necessity.379

Step 3: Prove the sufficiency of Theorem 4.2.380

In fact, sufficiency is implied by the proof of necessity, thus we complete the proof.381

Remark 4.3. Since the new control operator B in (3.10) makes the transformed382

Problem (EP) not a standard infinite dimensional stochastic optimal control problem,383

a novel equation (4.2)(d) is introduced as an adjoint equation of (4.2)(b). For the384

deterministic system, the solvability of (4.2)(d) is natural, and does not need to be385

proved separately. While in the stochastic system, due to the backward structure, its386

solution contains two components p2(·) and k2(·), so an additional proof is required.387

From the above proof, for a.e. θ ∈ [−δ, 0], it is equivalent to the backward SEE (4.6)388

in L2
FT

(Ω;Rm), consisting of Rm-valued FT -measurable random variables ξ such that389

E|ξ|2 <∞. Moreover, When C0,C
0(θ),Di,D

0(θ) depend on t, Theorem 4.2 still holds,390

i=0, · · ·, N .391

Inspired by (4.2) and (4.6), we go back to the original delayed control problem392

and characterize the open-loop solvability for Problem (P).393

Theorem 4.4. Let (A1)–(A2) hold and G10, G11 = 0. For any given initial data394

(s, x, φ, ψ) ∈ [0, T ) × Z, ū(·) is an open-loop optimal control of Problem (P) if and395

only if the following two conditions hold:396

(i) (Stationarity condition)397

M(t) + S00(t)X̄(t) +R00(t)ū(t)398

+

∫ 0

−δ

[
R10(t, θ)

⊤ū(t+ θ)+S01(t, θ)X̄(t+ θ)
]
dθ = 0, a.e. a.s.,(4.12)399
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where400

M(t) :=Et

[∫ T∧(t+δ)

t

(
S10(r, t−r)X̄(r) +R10(r, t−r)ū(r)+

∫ 0

−δ

[
R11(r, θ, t−r)ū(r+θ)

+S11(r, θ, t− r)X̄(r + θ)
]
dθ +B0(t− r)⊤P(r) +D0(t− r)⊤Q(r)

)
dr

+1[0,T+θi](t)

N∑
i=0

(
B⊤

i P(t− θi) +D⊤
i Q(t− θi)

)]
,

with (X̄(·),P(·),Q(·)) satisfying the following anticipated-backward SDDE:401

(4.13)



dX̄(t) =

∫
[−δ,0]

(
A(dθ)X̄t(θ) +B(dθ)ūt(θ)

)
dt

+

∫
[−δ,0]

(
C(dθ)X̄t(θ) +D(dθ)ūt(θ)

)
dW (t), t ∈ [s, T ],

−dP(t)=

{ N∑
i=0

A⊤
i Et[P(t−θi)]1[0,T+θi)(t)+C0(t)

⊤Q(t)+Q00(t)X̄(t)

+S00(t)
⊤ū(t)+

∫ 0

−δ

(
S10(t, θ)

⊤ū(t+θ) +Q10(t, θ)
⊤X̄(t+θ)

)
dθ

+

∫ 0

(t−T )∨(−δ)

Et

(
A0(θ)⊤P(t−θ) + C0(θ)⊤Q(t−θ)+Q10(t−θ, θ)

×X̄(t−θ)+S01(t−θ, θ)⊤ū(t−θ) +
∫ 0

−δ

[Q11(t−θ, θ′, θ)X̄(t−θ+θ′)

+S11(t−θ, θ, θ′)⊤ū(t−θ+θ′)]dθ′
)
dθ

}
dt−Q(t)dW (t), t ∈ [s,T ],

X̄(s) = x, X̄(t) = φ(t−s), t ∈ [s−δ, s), ū(t) = ψ(t−s), t ∈ [s−δ, s],
P(T ) = G00X̄(T ).

402

(ii) (Convexity condition)403

J(s, 0, 0, 0;u0(·)) ⩾ 0, ∀u0(·) ∈ L2
F(s, T ;Rm),

where X0(·) satisfies the following SDDE:404 
dX0(t)=

∫
[−δ,0]

(
A(dθ)X0

t (θ)+B(dθ)u0t (θ)
)
dt

+

∫
[−δ,0]

(
C(dθ)X0

t (θ)+D(dθ)u0t (θ)
)
dW (t), t∈ [s, T ],

X0(t) = 0, u0(t) = 0, t ∈ [s− δ, s].
Proof. Using the convex variational technique and applying Itô formula to ⟨P(·),405

X0(·)⟩, the proof is completed, similar to the proof of Theorem 4.1 in [29].406

Remark 4.5. (i) From (4.1) and (4.12), an interesting thing is that if [p1(t)]
0 =407

P(t), [k1(t)]
0 = Q(t) for all t ∈ [s, T ], then M(t) = Et([p2(t)](0)) = [p2(t)](0), thus408

the stationarity conditions (4.1) and (4.12) are consistent. (ii) Theorem 4.4 is derived409

similarly, when the coefficients of the state equation (2.3) are time-variant. (iii) Let410

delay disappear in Problem (P). Then, Theorem 4.4 reduces to Theorem 2.3.2 in [31]411

when b, σ, g, q, ρ=0 there. (iv) Let Problem (P) only contain pointwise delay and Ai,412

Bi,Di=0, i=1,· · · ,N−1. Then, the second equation of (4.13) is similar to (12) in [4].413

5. Closed-loop representation of open-loop optimal control. In this sec-414

tion, we study the solvability of an integral operator-valued Riccati equation, inspired415

by which, we give the closed-loop representation of the open-loop optimal control for416

Problem (P), by introducing a coupled matrix-valued Riccati equation.417

Definition 5.1. An open-loop optimal control ū(·) of Problem (P) is said to418

admit a closed-loop representation, if there exists K̄(·) ∈ L2(s, T ;L (M,Rm)) such419

that for any initial data (x, φ, ψ) ∈ Z, the function420
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ū(t) := K̄(t)Z̄(t), t ∈ [s, T ],

is an open-loop optimal control of Problem (P) for (x, φ, ψ) ∈ Z, where Z̄(·) is the421

solution to the following closed-loop system with Z0 := (x⊤, φ⊤, ψ⊤)⊤:422

(5.1) Z̄(t)=T(t−s)Z0+

∫ t

s

T(t−r)BK̄(r)Z̄(r)dr+

∫ t

s

T(t−r)CZ̄(r)dW (r), t∈ [s, T ].423

For any z ∈ Z, consider the following integral operator-valued Riccati equation:424

P (t)z = T(T − t)∗GT(T − t)z +

∫ T

t

T(r − t)∗
[
C∗P (r)C+Q(r)425

−(B∗P (r))∗R(r)−1(B∗P (r))
]
T(r − t)zdr, t ∈ [s, T ],(5.2)426

where B∗ := (0,∆∗). The following theorem guarantees its solvability.427

Theorem 5.2. Suppose all coefficients of Problem (P) are continuous and C ∈428

L (Z). Assume that there exists a constant µ > 0 such that R00 ⩾ µ. Then, the429

integral operator-valued Riccati equation (5.2) admits a unique solution in the class430

of strongly continuous self-adjoint operators.431

Proof. In the following, denote ||·||L (Z), ||·||Z by ||·|| for simplicity. First we show432

that there exists T0∈ [0,T−s], such that (5.2) admits a unique solution on [T−T0,T ].433

Let B(l) :=
{
P (·) : [T −T0, T ]→L (Z)

∣∣∣P (·) is a strongly continuous self-adjoint434

operator, sup
t∈[T−T0,T ]

||P (t)||⩽ l
}
. Consider the mapping: T :B(l)→B(l), P̃ (·)7→P (·), and435

P (·)=T (P̃ (·)) satisfies the following integral equation, for any z∈Z, t∈ [T−T0,T ],436

P (t)z = T(T − t)∗GT(T − t)z +

∫ T

t

T(r − t)∗
[
C∗P̃ (r)C+Q(r)437

−(B∗P (r))∗R(r)−1(B∗P (r))
]
T(r − t)zdr.(5.3)438

Then, we’ll complete the proof of this part in two steps.439

Step 1: Show that T is well-defined.440

Define τ := T − T0, consider the following optimal control problem:441 
Z̃(t) = T(t− τ)z0 +

∫ t

τ

T(t− r)Bu(r)dr, t ∈ [τ, T ], z0 ∈ Z,

min
u(·)∈L2(τ,T ;Rm)

J̃(τ, z0;u(·))=
∫ T

τ

[〈(
C∗P̃ (t)C+Q(t)

)
Z̃(t),Z̃(t)

〉
+
〈
R(t)u(t),u(t)

〉]
dt

+⟨GZ̃(T ),Z̃(T )⟩.
Then, similar to Theorem 2.3 in [12], the optimal control is ¯̃u(t)=−R(t)−1B∗P (t) ¯̃Z(t),442

and the value function is Ṽ (τ, z0) =
〈
P (τ)z0, z0

〉
, where P (·) satisfies (5.3). Moreover,443

similar to Lemma 2.6 in [12], (5.3) is equivalent to the following equation:444

(5.4)


P (t)z=T(T−t)∗GT∞(T,t)z+

∫ T

t

T(r−t)∗
(
C∗P̃ (r)C+Q(r)

)
T∞(r,t)zdr,

T∞(r, t)z=T(r−t)z−
∫ r

t

T(r−β)BR(β)−1B∗P (β)T∞(β,t)zdβ, τ⩽ t⩽r⩽T.

445

Let P0(·) be the solution to the following integral equation:446

P0(t)z=T(T−t)∗GT(T−t)z+
∫ T

t

T(r−t)∗
(
C∗P̃ (r)C+Q(r)

)
T(r−t)zdr, t ∈ [τ,T ].

Then, we have P (t) ⩽ P0(t). Thus, we obtain447

||P (t)||⩽ ||G||γ′2(e2γT0∨1)+γ′2T0(e2γT0∨1)
(

sup
s⩽r⩽T

||Q(r)||+l||C||2
)
, t∈ [τ,T ],(5.5)448
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where γ′ ⩾ 1 and γ ∈ R satisfying that ||T(t)|| ⩽ γ′eγt for all t ∈ [s, T ]. Choose large449

enough l and small enough T0 such that γ′2T0(e
2γT0 ∨ 1)||C||2 < 1

2 , and450

l > 2γ′2(e2γT0 ∨ 1)(T0 + 2)
(
||G||+ sup

s⩽r⩽T
||Q(r)||

)
.

Then, we have sup
τ⩽t⩽T

||P (t)|| < l, thus T is well-defined.451

Step 2: Show that T is a contraction mapping.452

Denote ˆ̃P (·)= P̃1(·)−P̃2(·), P̂ (·)=P1(·)−P2(·), and T̂∞(·,·)=T1
∞(·,·)−T2

∞(·,·). Then,we get453

||T∞(r, t)|| ⩽M(T0), τ ⩽ t ⩽ r ⩽ T.
Here and after,M(T0) is a generic constant, depending on µ,T0,|Bi|, sup

θ∈[−δ,0]

|B0(θ)|,||G||,454

sup
s⩽r⩽T

||Q(r)||,||Φ||,||L||,||C||,l. AndM(T0) increases as T0 increases. By (5.4) we have455

sup
τ⩽t⩽T

||T̂∞(t,τ)||2⩽M(T0)

∫ T

τ

||P̂ (r)||2dr, sup
τ⩽t⩽T

||P̂ (t)||2⩽M(T0) sup
τ⩽t⩽T

|| ˆ̃P (t)||2.

Choose T0 such that M(T0) in the above inequality satisfies456
(5.6) M(T0) < 1.457

Then, T is a contraction mapping on [T −T0, T ], thus there exists T0 such that (5.2)458

admits a unique solution on [T − T0, T ].459

Finally,we aim to show that(5.2) admits a unique solution on the whole interval [s,T ].460

For any z ∈ Z and t ∈ [T − T0, T ], consider461

P̄0(t)z = T(T − t)∗GT(T − t)z +

∫ T

t

T(r − t)∗
(
C∗P̄0(r)C+Q(r)

)
T(r − t)zdr.

Then, for t ∈ [T−T0,T ], ||P (t)||⩽ ||P̄0(t)|| ⩽ l̃, where l̃ depends on |Bi|, sup
θ∈[−δ,0]

|B0(θ)|,462

sup
r∈[s,T ]

||Q(r)||,||G||,||Φ||,||L||,T0,||C||. On [T −T0−T1,T −T0], consider the mapping463

T , in this case, G is replaced by P (T−T0) in the above part. Choose small enough464

T1 and large enough l such that γ′2T1(e
2γT1 ∨ 1)∥C∥2< 1

2 and l>2γ′2(e2γT1∨1)(T1+465

2)(l̃+ sup
r∈[s,T ]

||Q(r)||). Then, similar to (5.5), we get for t ∈ [T−T0−T1,T−T0],466

||P (t)||⩽ ||P (T−T0)||(e2γT1∨1)γ′2+γ′2T1(e2γT1∨1)
(

sup
s⩽r⩽T

||Q(r)||+l||C||2
)
<l,

thus T is well-defined on [T −T1−T0, T −T0]. Similar to (5.6), letM(T1) < 1. Then,467

T is a contraction mapping on [T −T1−T0, T −T0]. Repeating the above steps, (5.2)468

admits a unique solution on [s, T ], which completes the proof of Theorem 5.2.469

In the rest of this section, we consider Problem (P) with the following state470

equation instead of (2.3):471

(5.7)



dX(t) =
[ N∑

i=0

AiX(t+ θi) +

∫ 0

−δ

A0(θ)X(t+ θ)dθ +

N∑
i=0

Biu(t+ θi)

+

∫ 0

−δ

B0(θ)u(t+ θ)dθ
]
dt+

[
C0X(t) +

∫ 0

−δ

C0(θ)X(t+ θ)dθ

+D0u(t) +

∫ 0

−δ

D0(θ)u(t+ θ)dθ
]
dW (t), t ∈ [s, T ],

X(s) = x,X(t) = φ(t− s), t ∈ [s− δ, s), u(t) = ψ(t− s), t ∈ [s− δ, s].

472

Inspired by (5.2), let P00(t)ξ=
[
P (t)

(
ξ
0

)]0
, P01(t)ψ=

[
P (t)

(
0
ψ

)]0
, P10(t)ξ=

[
P (t)

(
ξ
0

)]1
,473

P11(t)ψ=
[
P (t)

(0
ψ

)]1
. Then, under some proper conditions on the coefficients, (P00(·),474

P01(·), P10(·),P11(·)) satisfies the following differential operator-valued Riccati equation:475
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(5.8)



(a)Ṗ00(t)=−Ã∗P00(t)−P00(t)Ã−C̃∗P00(t)C̃−Q(t)+
(
∆∗P10(t)

)∗R00(t)
−1
(
∆∗P10(t)

)
,

(b)Ṗ01(t)=−Ã∗P01(t)−P00(t)B̃−P01(t)A−C̃∗P00(t)D̃+
(
∆∗P10(t)

)∗R00(t)
−1
(
∆∗P11(t)

)
,

(c)Ṗ10(t)=−B̃∗P00(t)−A∗P10(t)−P10(t)Ã−D̃∗P00(t)C̃

+
(
∆∗P11(t)

)∗
R00(t)

−1
(
∆∗P10(t)

)
,

(d)Ṗ11(t)=−B̃∗P01(t)−A∗P11(t)−P10(t)B̃−P11(t)A−D̃∗P00(t)D̃

+
(
∆∗P11(t)

)∗
R00(t)

−1
(
∆∗P11(t)

)
,

P00(T ) = G̃, P01(T ) = 0, P10(T ) = 0, P11(T ) = 0.

476

Next we decompose (5.8), adjust some terms in the equations for P00(·), P01(·),477

P11(·), and introduce the following Riccati equations. Denote R(t) := R00(t) +478

D0
⊤E0(t)D0. Then, inspired by (5.8)(a), for almost everywhere t∈ [s,T ], θ, α∈ [−δ,0],479

introduce the coupled matrix-valued Riccati equation:480

(5.9)



Ė0(t)=−A⊤
0E0(t)−E0(t)A0−E1(t, 0)−E1(t,0)

⊤−C⊤
0E0(t)C0

−Q00(t)+
(
E3(t, 0) + S00(t)+B

⊤
0E0(t)+D

⊤
0E0(t)C0

)⊤

×R(t)−1
(
E3(t, 0) + S00(t) +B⊤

0 E0(t) +D⊤
0 E0(t)C0

)
,( ∂

∂t
− ∂

∂θ

)
E1(t,θ)= −E1(t,θ)A0−E2(t,θ,0)−

[N−1∑
i=1

Aiδ̂(θ−θi)+A0(θ)
]⊤
E0(t)

−Q10(t, θ)−C0(θ)⊤E0(t)C0+
[
E4(t, 0, θ)+S01(t, θ)+B⊤

0 E1(t, θ)
⊤

+D⊤
0E0(t)C

0(θ)
]⊤
R(t)−1

[
E3(t, 0)+S00(t)+B

⊤
0 E0(t)+D

⊤
0 E0(t)C0

]
,( ∂

∂t
− ∂

∂θ
− ∂

∂α

)
E2(t, θ, α)=−

[
A0(θ)+

N−1∑
i=1

Aiδ̂(θ−θi)
]⊤
E1(t,α)

⊤−E1(t,θ)
[
A0(α)

+

N−1∑
i=1

Aiδ̂(α−θi)
]
−C0(θ)⊤E0(t)C

0(α)−Q11(t,α,θ)+
[
E4(t,0,θ)+S01(t,θ)+B

⊤
0E1(t,θ)

⊤

+D⊤
0E0(t)C

0(θ)
]⊤
R(t)−1

[
E4(t,0,α)+S01(t,α)+B

⊤
0E1(t,α)

⊤+D0
⊤E0(t)C

0(α)
]
,

E0(T ) = G00, E1(T, θ) = G10(θ), E1(t,−δ) = A⊤
NE0(t),

E2(T,θ,α)=G11(α,θ), E2(t,−δ,α)=A⊤
NE1(t, α)

⊤, E2(t,θ,−δ)=E1(t,θ)AN .

481

Similarly, inspired by (5.8)(b), introduce the coupled matrix-valued Riccati equation:482

(5.10)



( ∂
∂t
− ∂

∂θ

)
E3(t,θ)=−

[N−1∑
i=1

Biδ̂(θ−θi)+B0(θ)

]⊤
E0(t)−D0(θ)⊤E0(t)C0−E4(t,θ,0)

−S10(t,θ)+
[
E5(t,0,θ)+R10(t,θ)

⊤+B⊤
0E3(t,θ)

⊤+D⊤
0E0(t)D

0(θ)
]⊤

R(t)−1

×
[
E3(t, 0)+S00(t)+B

⊤
0 E0(t)

⊤+D⊤
0 E0(t)C0

]
−E3(t, θ)A0,( ∂

∂t
− ∂

∂θ
− ∂

∂α

)
E4(t,θ,α)=−

[
B0(θ)+

N−1∑
i=1

Biδ̂(θ−θi)
]⊤
E1(t,α)

⊤−E3(t,θ)
[
A0(α)

+

N−1∑
i=1

Aiδ̂(α−θi)
]
−D0(θ)⊤E0(t)C

0(α)−S11(t,α,θ)+
[
E5(t,0,θ)+R10(t,θ)

⊤+B⊤
0E3(t,θ)

⊤

+D⊤
0E0(t)D

0(θ)
]⊤
R(t)−1

[
E4(t,0,α)+S01(t,α)+B

⊤
0E1(t,α)

⊤+D0
⊤E0(t)C

0(α)
]
,

E3(T, θ) = 0, E3(t,−δ) = B⊤
NE0(t),

E4(T, θ, α) = 0, E4(t,−δ, α) = B⊤
NE1(t, α)

⊤, E4(t, θ,−δ) = E3(t, θ)AN .

483
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Inspired by (5.8)(d), introduce the following matrix-valued Riccati equation:484

(5.11)



( ∂
∂t

− ∂

∂θ
− ∂

∂α

)
E5(t, θ, α) = −

[N−1∑
i=1

Biδ̂(θ − θi) +B0(θ)

]⊤
E3(t, α)

⊤

−E3(t,θ)

[N−1∑
i=1

Biδ̂(α−θi)+B0(α)

]
−D0(θ)⊤E0(t)D

0(α)−R11(t, α, θ)

+
[
E5(t, 0, θ) +D⊤

0 E0(t)D
0(θ) +R10(t, θ)

⊤ +B⊤
0 E3(t, θ)

⊤
]⊤

×R(t)−1
[
E5(t,0,α)+D

⊤
0 E0(t)D

0(α)+R10(t,α)
⊤+B⊤

0 E3(t,α)
⊤
]
, a.e. t,α,θ,

E5(T, θ, α) = 0, E5(t,−δ, α) = B⊤
NE3(t, α)

⊤, E5(t, θ,−δ) = E3(t, θ)BN ,

485

where δ̂(·) is the delta function, i.e. δ̂(θ)=0 for θ ̸=0 and
∫∞
−∞δ̂(θ)dθ=1. Then, we can486

derive the closed-loop representation of open-loop optimal control for Problem (P).487

Theorem 5.3. Suppose all coefficients of Problem (P) are continuous and R > 0.488

Let continuous functions E0(t), E1(t, θ), E2(t, θ, α), E3(t, θ), E4(t, θ, α), E5(t, θ, α),489

t ∈ [s, T ], θ, α ∈ [−δ, 0], satisfy the coupled matrix-valued Riccati equations (5.9)–490

(5.11), and E0(t) = E0(t)
⊤, E2(t, θ, α) = E2(t, α, θ)

⊤, E5(t, θ, α) = E5(t, α, θ)
⊤. For491

any given initial data (s, x, φ, ψ) ∈ [0, T )× Z, denote492

K̄(t)

xφ
ψ

 = −R(t)−1

{[
E3(t, 0) +B⊤

0 E0(t) +D⊤
0 E0(t)C0 + S00(t)

]
x493

+

∫ 0

−δ

[
E4(t, 0, θ) +B⊤

0 E1(t, θ)
⊤ + S01(t, θ) +D⊤

0 E0(t)C
0(θ)

]
φ(θ)dθ494

+

∫ 0

−δ

[
E5(t, 0, θ) +B⊤

0 E3(t, θ)
⊤ +R10(t, θ)

⊤ +D⊤
0 E0(t)D

0(θ)
]
ψ(θ)dθ

}
.(5.12)495

Then, the closed-loop representation of the open-loop optimal control for Problem (P)496

with the state equation (5.7), is as follows:497

(5.13) ū(t) = K̄(t)Z̄(t), a.e. a.s.,498

where Z̄(·) satisfies (5.1), and the value function has the following form:499

V (s,x,φ(·),ψ(·))=⟨E0(s)x,x⟩+2

∫ 0

−δ

⟨φ(θ),E1(s,θ)x⟩dθ

+

∫ 0

−δ

∫ 0

−δ

⟨E2(s,θ,α)φ(α),φ(θ)⟩dθdα+ 2

∫ 0

−δ

⟨ψ(θ),E3(s,θ)x⟩dθ

+2

∫ 0

−δ

∫ 0

−δ

⟨ψ(θ),E4(s,θ,α)φ(α)⟩dαdθ+
∫ 0

−δ

∫ 0

−δ

⟨E5(s,θ,α)ψ(α),ψ(θ)⟩dθdα.

Proof. Problem (P) is equivalent to Problem (EP) as noted in Remark 3.3, thus500

ū(t) = −R(t)−1
{[
E3(t, 0) +B⊤

0 E0(t) +D⊤
0 E0(t)C0 + S00(t)

]
X̄(t)501

+

∫ 0

−δ

[
E4(t, 0, θ) +B⊤

0 E1(t, θ)
⊤ + S01(t, θ) +D⊤

0 E0(t)C
0(θ)

]
X̄(t+ θ)dθ502

+

∫ 0

−δ

[
E5(t, 0, θ)+B

⊤
0E3(t,θ)

⊤+R10(t, θ)
⊤+D⊤

0E0(t)D
0(θ)

]
ū(t+θ)dθ

}
, a.e. a.s.(5.14)503

Then, by (2.4), we only need to prove that504

J(s, x, φ(·), ψ(·); ū(·)) ⩽ J(s, x, φ(·), ψ(·);u(·)), ∀u(·) ∈ L2
F(s, T ;Rm).

Define505

Γ(t) :=
〈
E0(t)X(t), X(t)

〉
+2

∫ 0

−δ

〈
X(t+θ), E1(t, θ)X(t)

〉
dθ

+

∫ 0

−δ

∫ 0

−δ

〈
E2(t, θ, α)X(t+α), X(t+θ)

〉
dθdα+ 2

∫ 0

−δ

〈
u(t+ θ), E3(t, θ)X(t)

〉
dθ
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+2

∫ 0

−δ

∫ 0

−δ

〈
u(t+θ),E4(t,θ,α)X(t+α)

〉
dαdθ+

∫ 0

−δ

∫ 0

−δ

〈
E5(t,θ,α)u(t+α), u(t+θ)

〉
dθdα.

Then, by (5.7), (5.9)–(5.11) and applying Itô formula, we obtain506

J(s, x, φ(·), ψ(·);u(·))

=Γ(s)+E
∫ T

s

〈
R(t)

(
u(t)+R(t)−1

{[
E3(t,0)+B

⊤
0E0(t)+D

⊤
0E0(t)C0+S00(t)

]
X(t)

+

∫ 0

−δ

[
E4(t, 0, θ) +B⊤

0 E1(t, θ)
⊤ + S01(t, θ) +D⊤

0 E0(t)C
0(θ)

]
X(t+ θ)dθ

+

∫ 0

−δ

[
E5(t, 0, θ)+B

⊤
0 E3(t, θ)

⊤+R10(t, θ)
⊤+D⊤

0 E0(t)D
0(θ)

]
u(t+ θ)dθ

})
,

u(t) +R(t)−1
{[
E3(t, 0) +B⊤

0 E0(t) +D⊤
0 E0(t)C0 + S00(t)

]
X(t)

+

∫ 0

−δ

[
E4(t, 0, θ) +B⊤

0 E1(t, θ)
⊤ + S01(t, θ) +D⊤

0 E0(t)C
0(θ)

]
X(t+ θ)dθ

+

∫ 0

−δ

[
E5(t, 0, θ)+B

⊤
0 E3(t, θ)

⊤+R10(t, θ)
⊤+D⊤

0 E0(t)D
0(θ)

]
u(t+ θ)dθ

}〉
dt,

which completes the proof.507

Remark 5.4. Now we study the solvability of the coupled matrix-valued Riccati508

equations (5.9)– (5.11). Assume that Ai, Bi = 0, i = 1, · · · , N − 1, and D0, G00, G10,509

G11 = 0. Then, (5.9)– (5.11) admit unique solutions. Here we just provide a sketch510

of the proof, and we refer to [1] for full details of each step.511

Step 1: Consider the integral forms of the coupled matrix-valued Riccati equations512

(5.9)– (5.11). Then, there exists τ > 0 such that (5.9)– (5.11) admit unique solutions513

for T − τ ⩽ t ⩽ T , −δ ⩽ θ, α ⩽ 0. In fact, denote by M the upper bound of all514

coefficients of Problem (P), and for any given l > 0, define515

B(l) :=
{
(E0(·), E1(·, ·), E2(·, ·, ·), E3(·, ·), E4(·, ·, ·), E5(·, ·, ·)) ∈ C([T − τ, T ];Sn)

×C([T−τ,T ]×[−δ, 0];Rn×n)×C([T−τ ]×[−δ, 0]2;Rn×n)×C([T−τ, T ]×[−δ, 0];Rm×n)
×C([T − τ, T ]× [−δ, 0]2;Rm×n)× C([T − τ, T ]× [−δ, 0]2;Rm×m);

sup
t∈[T−τ,T ]
θ,α∈[−δ,0]

{
|E0(t)|+|E1(t,θ)|+|E2(t,θ,α)|+|E3(t,θ)|+|E4(t,θ,α)|+|E5(t,θ,α)|

}
⩽ l

}
.

Consider the mapping T :B(l)−→B(l), (E0(·),E1(·, ·),E2(·, ·, ·),E3(·, ·),E4(·, ·, ·),E5(·, ·, ·))516

7→ (Ẽ0(·), Ẽ1(·, ·), Ẽ2(·, ·, ·), Ẽ3(·, ·), Ẽ4(·, ·, ·), Ẽ5(·,·,·)), where Ẽ0(·),Ẽ1(·, ·) and Ẽ2(·, ·, ·) sat-517

isfy the integral form of (5.9):518

Ẽ0(t)=

∫ T

t

[
A⊤

0 E0(s)+E0(s)A0+E1(s,0)+E1(s,0)
⊤+C⊤

0E0(s)C0+Q00(s)519

−
(
E3(s,0)+S00(s)+B

⊤
0E0(s)

)⊤
R00(s)

−1
(
E3(s,0)+S00(s)+B

⊤
0E0(s)

)]
ds,(5.15)520

Ẽ1(t, θ)=A
⊤
N Ẽ0(t+θ+δ)1[−δ,T−t−δ)(θ)+

∫ (t+θ+δ)∧T

t

{
−E1(r, t+θ−r)A0521

+E2(r,t+θ−r,0)+A0(t+θ−r)⊤E0(r)+Q10(r, t+θ−r)522

+C0(t+θ−r)⊤E0(r)C0−
[
E4(r,0,t+θ−r)+S01(r,t+θ−r)523

+B⊤
0E1(r, t+θ−r)⊤

]⊤
R00(r)

−1
[
E3(r,0)+S00(r)+B

⊤
0E0(r)

]}
dr,(5.16)524

and525

Ẽ2(t, θ, α)=A
⊤
N Ẽ1(t+ θ + δ, α− θ − δ)⊤1[−δ,T−t−δ)(θ)526

+

∫ (t+θ+δ)∧T

t

{
A0(t+θ−r)⊤E1(r,t+α−r)⊤+E1(r,t+θ−r)A0(t+α−r)527

+C0(t+θ−r)⊤E0(r)C
0(t+α−r)+Q11(r,t+α−r,t+θ−r)528

This manuscript is for review purposes only.



SOLVABILITY FOR DELAYED LQ PROBLEMS 19

−
[
E4(r,0,t+θ−r)+S01(r,t+θ−r)+B⊤

0E1(r,t+θ−r)⊤
]⊤
R00(r)

−1
529

×
[
E4(r,0,t+α−r)+S01(r,t+α−r)+B⊤

0E1(r, t+α−r)⊤
]}
dr, α ⩾ θ,(5.17)530

and for α<θ, Ẽ2(t, θ, α) = Ẽ2(t, α, θ)
⊤. Notice that the forms of (5.10) and (5.11) are531

similar to (5.9). Then, the equations for Ẽ3(·, ·), Ẽ4(·, ·, ·) and Ẽ5(·,·,·) can be constructed532

similarly to (5.16) and (5.17). Hence there exists a τ > 0 (depending only on M, l)533

such that T is a contraction mapping. By the fixed point theorem, the coupled534

matrix-valued Riccati equations (5.9)– (5.11) admit unique solutions.535

Step 2: Let (E0(·),E1(·,·),E2(·,·,·),E3(·,·),E4(·,·,·),E5(·,·,·)) be the continuous solu-536

tion to (5.9)–(5.11) for T−τ⩽ t⩽T and θ,α∈ [−δ,0]. Then, E0(·),E1(·,·),E2(·,·,·),E3(·,·),537

E4(·,·,·),E5(·,·,·) satisfy Lipschitz conditions. In fact, choose |h| small enough, denote538

M(t):= sup
θ,α∈[−δ,0]

{
|E1(t,θ)−E1(t,θ+h)|+|E2(t,θ,α)−E2(t,θ+h,α)|+|E3(t,θ)

−E3(t,θ+h)|+|E4(t,θ,α)−E4(t,θ+h,α)|+|E5(t,θ,α)−E5(t,θ+h,α)|+|E2(t,θ,α)

−E2(t,θ,α+h)|+|E4(t,θ,α)−E4(t,θ,α+h)|+|E5(t,θ,α)−E5(t,θ,α+h)|
}
.

Then, similar to (5.15)–(5.17), there existsM ′>0 (depending only onM,τ) such that539

M(t) ⩽M ′
∫ T

t

M(r)dr +O(h).

Let h→0.Then,E0(·),E1(·,·),E2(·,·,·),E3(·,·),E4(·,·,·),E5(·,·,·) satisfy lipschitz conditions.540

Step 3: Extend the solution from [T − τ, T ] to [s, T ]. Then, (5.9)– (5.11) admit541

unique solutions on [s, T ]. For example, on [T −τ− τ̃ , T −τ ], we substitute l with 2l in542

Step 1, where τ̃ is the new step size. Next, we show that E0(·),E1(·, ·),E2(·, ·, ·),E3(·, ·),543

E4(·, ·, ·), E5(·, ·, ·) satisfy Lipschitz conditions on [T − τ − τ̃ , T − τ ] in Step 2. Finally,544

we repeat Step 1 and Step 2 until we derive the solution on the whole interval [s, T ].545

Remark 5.5. By the coupled matrix-valued Riccati equations (5.9)– (5.11), we546

obtain the closed-loop representation (5.14)—a new state feedback form. Let Problem547

(P) become the deterministic case, i.e. the diffusion term disappears in (5.7). Then,548

(5.9)– (5.11) are similar to (2.33)–(2.38) in [12]. Moreover, Theorem 5.3 is derived549

similarly, when the coefficients of the state equation (5.7) are time-variant.550

6. Closed-loop solvability. In this section, we study a stochastic optimal con-551

trol problem which involves only state delay not control delay. The general case is552

open, due to some technical reasons, up to now. By an equivalent transformed control553

problem, we define the closed-loop solvability for the original delayed control problem,554

and assure it by the solvability of a differential operator-valued Riccati equation.555

First we reformulate the optimal control problem as follows. Now the state equa-556

tion (2.3) becomes the following SDDE:557

(6.1)

dX(t)=
[∫

[−δ,0]

A(dθ)Xt(θ)+B0u(t)
]
dt+

[∫
[−δ,0]

C(dθ)Xt(θ)+D0u(t)
]
dW (t), t∈[s,T ],

X(s)=x, X(t)=φ(t−s), t ∈ [s−δ, s),
558

where
∫
[−δ,0]

A(dθ)φ̃(θ) and
∫
[−δ,0]

C(dθ)φ̃(θ) are defined by (2.1) and (2.2), for any559

φ̃ ∈ L. The cost functional (2.4) becomes:560

J(s, x, φ(·);u(·))=E
∫ T

s

[〈
Q00(t)X(t),X(t)

〉
+2

∫ 0

−δ

〈
Q10(t,θ)

⊤X(t+θ),X(t)
〉
dθ561

+

∫
[−δ,0]2

〈
Q11(t, θ, θ

′)X(t+ θ), X(t+ θ′)
〉
dθ′dθ + 2

〈
S00(t)X(t), u(t)

〉
562

+2

∫ 0

−δ

〈
S01(t,θ)X(t+θ),u(t)

〉
dθ+

〈
R00(t)u(t),u(t)

〉]
dt+E

[〈
G00X(T ),X(T )

〉
563
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+2

∫ 0

−δ

〈
G10(θ)

⊤X(T+θ),X(T )
〉
dθ+

∫
[−δ,0]2

〈
G11(θ,θ

′)X(T+θ),X(T+θ′)
〉
dθ′dθ

]
.(6.2)564

We restate the control problem studied in this section as follows.565

Problem (P̃). For any (s, x, φ) ∈ [0, T )×M, to find a ū(·) ∈ L2
F(s, T ;Rm) such566

that (6.1) is satisfied and567

J(s, x, φ(·); ū(·)) = inf
u(·)∈L2

F(s,T ;Rm)
J(s, x, φ(·);u(·)) := V (s, x, φ(·)).

As in Section 3, we transform the delayed state equation (6.1) in Rn into one in568

M without delay. Now the transformed state equation (3.10) becomes569

(6.3) X(t)=Φ(t−s)ξ+
∫ t

s

Φ(t−r)B̃u(r)dr+
∫ t

s

Φ(t−r)
(
C̃X(r)+D̃u(r)

)
dW(r), t∈ [s,T ],570

where ξ :=

(
x
φ

)
, Φ(·),C̃ are defined as (3.1) and (3.3), B̃, D̃ are redefined as B̃ :Rm→M,571

u 7→
(
B0u
0

)
, and D̃ :Rm→M, u 7→

(
D0u
0

)
, for any u∈Rm. The cost (3.11) becomes572

J(s, ξ;u(·)) = J(s, x, φ(·);u(·)) = E
{∫ T

s

[〈
Q̃(t)X(t),X(t)

〉
M

573

+2
〈
S̃0(t)X(t), u(t)

〉
+
〈
R̃00(t)u(t), u(t)

〉]
dt+

〈
G̃X(T ),X(T )

〉
M

}
.(6.4)574

Then we restate Problem (EP), and define the closed-loop solvability for Problem (P̃).575

Problem (ẼP). For any (s, ξ) ∈ [0, T )×M, to find a ū(·) ∈ L2
F(s, T ;Rm) such576

that (6.3) is satisfied and577

J(s, ξ; ū(·)) = inf
u(·)∈L2

F(s,T ;Rm)
J(s, ξ;u(·)) := V (s, ξ).

Definition 6.1. Any K(·)∈L2(s,T ;L (M,Rm)) is called a closed-loop strategy578

of Problem ˜(P) on [s,T ]. For any K(·) ∈ L2(s, T ;L (M,Rm)) and (x, φ) ∈ M, let579

ξ ≡
(
x
φ

)
, X(·) ≡ X(· ; s, ξ,K(·)) be the solution to the following equation:580

(6.5) X(t)=Φ(t−s)ξ+
∫ t

s

Φ(t−r)B̃K(r)X(r)dr+

∫ t

s

Φ(t−r)
[
C̃X(r)+D̃K(r)X(r)

]
dW (r),581

and582
u(t) = K(t)X(t), t ∈ [s, T ].

Then, (X(·), u(·)) is called the outcome pair of K(·) on [s, T ] corresponding to the583

initial trajectory (x, φ); X(·), u(·) are called the corresponding closed-loop state and584

closed-loop outcome control, respectively.585

Definition 6.2. A closed-loop strategy K̄(·) ∈ L2(s, T ;L (M,Rm)) is said to be586

optimal on [s, T ] if587

J
(
s, ξ; K̄(·)X̄(·)

)
≤ J

(
s, ξ;u(·)

)
, ∀u(·) ∈ L2

F(s, T ;Rm), ∀ξ =
(
x
φ

)
∈ M,

where X̄(·) is the closed-loop state corresponding to (K̄(·), x, φ). If there (uniquely)588

exists an optimal closed-loop strategy on [s, T ], Problem ˜(P) is said to be (uniquely)589

closed-loop solvable on [s, T ].590

Introduce the following linear operator-valued equation:591

(6.6)


Ṗ (t)+P (t)(Ã+B̃K̄(t))+(Ã+B̃K̄(t))∗P (t)+(C̃+D̃K̄(t))∗P (t)(C̃+D̃K̄(t))

+Q̃(t)+K̄(t)∗R̃00(t)K̄(t)+K̄(t)∗S̃0(t)+S̃0(t)
∗K̄(t)=0, t ∈ [s, T ],

P (T ) = G̃.

592

Then, we explore the necessary conditions of closed-loop solvability for Problem ˜(P).593
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Theorem 6.3. Let (A1)–(A2) hold. Suppose K̄(·) is the optimal closed-loop strat-594

egy of Problem ˜(P) on [s, T ]. Then,595

R̃00(t) + D̃∗P (t)D̃ ≥ 0, a.e.,596 [
R̃00(t) + D̃∗P (t)D̃

]
K̄(t) + B̃∗P (t) + D̃∗P (t)C̃ + S̃0(t) = 0, a.e.,(6.7)597

where P (·) satisfies (6.6).598

Proof. For any v(·) ∈ L2
F(s, T ;Rm) and t ∈ [s, T ], consider the following SEE:599

(6.8)

{
dz(t)=

[
Ãz(t)+B̃K̄(t)z(t)+B̃v(t)

]
dt+

[
C̃z(t)+D̃K̄(t)z(t)+D̃v(t)

]
dW (t),

z(s) = ξ,
600

where Ã is defined as (3.2). Then, applying Itô formula to ⟨P (·)z(·), z(·)⟩ (substituting601

Ã with its Yosida approximation Ãλ, and letting λ→ ∞), we obtain602

J(s, ξ; K̄(·)z(·) + v(·)) = E⟨P (s)ξ, ξ⟩+ E
∫ T

s

[〈(
R̃00(t) + D̃∗P (t)D̃

)
v(t), v(t)

〉
+2

〈(
B̃∗P (t) + D̃∗P (t)C̃ + R̃00(t)K̄(t) + S̃0(t) + D̃∗P (t)D̃K̄(t)

)
z(t),v(t)

〉]
dt.

Since K̄(·) is the optimal closed-loop strategy, we have603

E
∫ T

s

[
2
〈(
B̃∗P (t)+D̃∗P (t)C̃+R̃00(t)K̄(t)+S̃0(t)+D̃

∗P (t)D̃K̄(t)
)
z(t),v(t)

〉
604

+
〈(
R̃00(t) + D̃∗P (t)D̃

)
v(t), v(t)

〉]
dt ⩾ 0, ∀v(·) ∈ L2

F(s, T ;Rm).(6.9)605

In the following, we aim to prove that606

(6.10) R̃00(t) + D̃∗P (t)D̃ ⩾ 0, a.e.607

Suppose there exists Ω0 ⊆ [s, T ] and |Ω0| > 1
l , for some l > 0, such that R̃00(t) +608

D̃∗P (t)D̃ < 0 on Ω0. Without loss of generality, assume that there exists β > 0 such609

that R̃00(t) + D̃∗P (t)D̃ ⩽ −βI. Then, we can choose a sequence of Borel measurable610

sets {Ωk} such that Ωk ⊆ Ω0 and |Ωk| = 1
l+k . Let ξ = 0, vk = (

√
k, 0, · · · , 0)⊤IΩk

(t),611

and zk(·) be the corresponding solution to (6.8). Then, we have612

sup
s⩽t⩽T

E|zk(t)|2 ⩽ME
∫ T

s

|vk(t)|2dt =
k

k + l
M ⩽M,

here and after, M is a generic constant. By (6.9), we have613

0 ⩽ lim
k→∞

E
∫ T

s

〈(
R̃00(t) + D̃∗P (t)D̃

)
vk(t), vk(t)

〉
dt+ 2 lim

k→∞
E
∫ T

s

〈(
B̃∗P (t)

+D̃∗P (t)C̃ + R̃00(t)K̄(t) + S̃0(t) + D̃∗P (t)D̃K̄(t)
)
zk(t), vk(t)

〉
dt

⩽ −β k

k + l
+M

√
k

k + l

(∫
Ωk

||K̄(t)||2L (M,Rm)dt
) 1

2 → −β, as k → ∞,

which is a contradiction! Thus, (6.10) holds. It remains to prove the second equality614

in (6.7). K̄(·) is the optimal closed-loop strategy of Problem (P̃) on [s, T ], thus is615

also optimal on [r,T ] for any r ∈ (s,T ], then (6.9) holds for any r ∈ (s,T ]. Choose616

ξ∈M, vj(t)=
1
j v(t), v(·)∈L

2
F(s,T ;Rm), let zj(·) be the solution to the following SEE:617 {

dzj(t)=
[
Ãzj(t)+B̃K̄(t)zj(t)+B̃vj(t)

]
dt+

[
C̃zj(t)+D̃K̄(t)zj(t)+D̃vj(t)

]
dW (t), t∈ [r,T ],

zj(r) = ξ.
Then, by (6.9), ∀v(·) ∈ L2

F(s, T ;Rm), we derive618

lim
j→∞

E
∫ T

r

〈(
B̃∗P (t)+D̃∗P (t)C̃+R̃00(t)K̄(t)+S̃0(t)+D̃

∗P (t)D̃K̄(t)
)
zj(t),v(t)

〉
dt⩾0.(6.11)619

Consider the following SEE:620 {
dz̃(t) =

(
Ãz̃(t) + B̃K̄(t)z̃(t)

)
dt+

(
C̃z̃(t) + D̃K̄(t)z̃(t)

)
dW (t), t ∈ [r, T ],

z̃(r) = ξ.

Then, we have621

sup
r⩽t⩽T

E|zj(t)− z̃(t)|2 ⩽ E
∫ T

r

|vj(t)|2dt→ 0, as j → ∞,
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which and (6.11) imply that622

E
∫ T

r

〈(
B̃∗P (t)+D̃∗P (t)C̃ + R̃00(t)K̄(t) + S̃0(t) + D̃∗P (t)D̃K̄(t)

)
z̃(t), v(t)

〉
dt ⩾ 0,

for any v(·) ∈ L2
F(s, T ;Rm). Choose v(t) = v1[r,r+ε](t), v ∈ Rm. Then, we deduce623

lim
ε→0

1

ε

∫ r+ε

r

〈(
B̃∗P (t)+D̃∗P (t)C̃+R̃00(t)K̄(t)+S̃0(t)+D̃

∗P (t)D̃K̄(t)
)
ξ, v

〉
dt = 0,

for any ξ ∈ M, v ∈ Rm. By the arbitrariness of ξ and v, the second equality of (6.7)624

holds. Hence we complete the proof.625

Next we give the sufficient conditions of the closed-loop solvability for Problem (P̃).626

Theorem 6.4. Let (A1)–(A2) hold. Suppose R̃00+D̃
∗PD̃ ≥ 0, R(B̃∗P+D̃∗PC̃+627

S̃0) ⊆ R(R̃00 + D̃∗PD̃), with P (·) satisfying the Riccati equation (6.6). Here628

K̄(t) = −
(
R̃00(t) + D̃∗P (t)D̃

)†[
B̃∗P (t) + S̃0(t) + D̃∗P (t)C̃

]
629

+
[
I −

(
R̃00(t) + D̃∗P (t)D̃

)†(
R̃00(t) + D̃∗P (t)D̃

)]
θ(t), a.e.,(6.12)630

for any θ(·) ∈ L2(s, T ;L (M,Rm)). Suppose K̄(·) ∈ L2(s, T ;L (M,Rm)). Then, it is631

the optimal closed-loop strategy of Problem (P̃), and the value function is as follows632

(6.13) V (s, ξ) =
〈
P (s)ξ, ξ

〉
M
.633

Proof. DenoteM(t) := R̃00(t)+D̃
∗P (t)D̃. Then, by (6.12) andR(B̃∗P+D̃∗PC̃+634

S̃0) ⊆ R(M), we derive635

(6.14) M(t)K̄(t) + B̃∗P (t) + D̃∗P (t)C̃ + S̃0(t) = 0, a.e..636

By (6.3) and applying Itô formula to ⟨P (·)X(·),X(·)⟩, we obtain637

J(s, ξ;u(·))=E
{
⟨P (s)ξ, ξ⟩+

∫ T

s

[
⟨M(t)u(t), u(t)⟩−⟨M(t)K̄(t)X(t),K̄(t)X(t)⟩−2

〈(̃
B∗P (t)638

+D̃∗P (t)C̃+S̃0(t)
)
X(t),K̄(t)X(t)

〉
+2

〈(
B̃∗P (t)+D̃∗P (t)C̃+S̃0(t)

)
X(t),u(t)

〉]
dt

}
.639

Noting (6.14), we have640

−⟨M(t)K̄(t)X(t), K̄(t)X(t)⟩ − 2
〈(
B̃∗P (t) + D̃∗P (t)C̃ + S̃0(t)

)
X(t), K̄(t)X(t)

〉
=−

〈
M(t)K̄(t)X(t),K̄(t)X(t)

〉
+2

〈
M(t)K̄(t)X(t),K̄(t)X(t)

〉
=⟨M(t)K̄(t)X(t),K̄(t)X(t)⟩,

which yields641

J(s, ξ;u(·)) = E
{
⟨P (s)ξ, ξ⟩+

∫ T

s

〈
M(t)

(
u(t)− K̄(t)X(t)

)
, u(t)− K̄(t)X(t)

〉
dt
}
.

Thus, we complete the proof.642

We summarize the above discussion and characterize the closed-loop solvability643

for Problem (P̃).644

Theorem 6.5. Let (A1)–(A2) hold. Then, K̄(·) is the optimal closed-loop strategy645

of Problem (P̃) on [s, T ] if and only if646

(i) K̄(·) is given by (6.12), where P (·) satisfies the differential operator-valued Riccati647

equation (6.6),648

(ii) R̃00 + D̃∗PD̃ ≥ 0, R(B̃∗P + D̃∗PC̃ + S̃0) ⊆ R(R̃00 + D̃∗PD̃),649

(iii) K̄(·) ∈ L2(s, T ;L (M,Rm)).650

In the case, the value function is given by (6.13).651

Remark 6.6. In Theorem 6.5, we give some sufficient conditions for the solvability652

of the Riccati equation (6.6). Moreover, we overcome the difficulties of decoupling for-653

ward delayed state equations and backward advanced adjoint equations, by introduc-654

ing the closed-loop strategy and the auxiliary equation (6.6). When B0,C0,D0,C
0(θ)655

depend on t, Theorem 6.5 is derived similarly.656
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Inspired by (6.6), recall that δ̂(·) is the delta function, denote R(t) := R00(t) +657

D⊤
0 E0(t)D0, and for almost everywhere t ∈ [s, T ], θ, α ∈ [−δ, 0], introduce the follow-658

ing coupled matrix-valued Riccati equation:659

(6.15)



Ė0(t)+A⊤
0 E0(t)+E0(t)A0+E1(t, 0)+E1(t, 0)⊤+C⊤

0 E0(t)C0+Q00(t)

−
[
S00(t)+B

⊤
0 E0(t)+D⊤

0E0(t)C0

]⊤
R(t)†

[
S00(t)+B

⊤
0 E0(t)+D⊤

0 E0(t)C0

]
=0,( ∂

∂t
− ∂

∂θ

)
E1(t, θ)+A⊤

0E1(t,θ)+E2(t,0,θ)+E0(t)
[N−1∑
i=1

Aiδ̂(θ−θi)+A0(θ)
]

+Q10(t,θ)
⊤+C⊤

0 E0(t)C0(θ)−
[
S00(t)+B

⊤
0 E0(t)+D⊤

0 E0(t)C0

]⊤
R(t)†

×
[
S01(t,θ) +B⊤

0 E1(t,θ)+D⊤
0 E0(t)C0(θ)

]
=0,( ∂

∂t
− ∂

∂θ
− ∂

∂α

)
E2(t,θ,α)+

[N−1∑
i=1

Aiδ̂(θ−θi)+A0(θ)
]⊤
E1(t,α)+E1(t,θ)⊤

[
A0(α)

+

N−1∑
i=1

Aiδ̂(α−θi)
]
+C0(θ)⊤E0(t)C0(α)+Q11(t,α,θ)−

[
S01(t,θ)+B

⊤
0 E1(t,θ)

+D⊤
0E0(t)C0(θ)

]⊤
R(t)†

[
S01(t,α)+B

⊤
0 E1(t,α) +D⊤

0E0(t)C0(α)
]
=0,

E0(T ) = G00, E1(T, θ) = G10(θ)
⊤, E1(t,−δ) = E0(t)AN ,

E2(T,θ,α)=G11(α,θ), E2(t,−δ,α)=A⊤
NE1(t,α), E2(t,θ,−δ)=E1(t,θ)⊤AN .

660

Then, we go back to the original delayed control problem (P̃), and give a clear661

characterization of its closed-loop solvability.662

Theorem 6.7. Suppose all coefficients of Problem (P̃) are continuous and R ≥ 0.663

Let E0(t), E1(t, θ), E2(t, θ, α), t ∈ [s, T ], θ, α ∈ [−δ, 0], be continuous functions satis-664

fying the equation (6.15), and E0(t) = E0(t)⊤, E2(t, θ, α) = E2(t, α, θ)⊤. Moreover,665 (
B⊤

0 E0(t) + S00(t) +D⊤
0 E0(t)C0

)
x+

∫ 0

−δ

(
B⊤

0 E1(t, θ)666

+D⊤
0 E0(t)C0(θ)+S01(t, θ)

)
φ(θ)dθ∈R(R(t)),∀x ∈ Rn, φ ∈ L.(6.16)667

Let K̄(·) ∈ L2(s, T ;L (M,Rm)) be given by668

K̄(t)ξ=−R(t)†
[(
B⊤

0 E0(t)+S00(t)+D
⊤
0 E0(t)C0

)
x+

∫ 0

−δ

(
B⊤

0 E1(t,θ)+D⊤
0E0(t)C0(θ)669

+S01(t,θ)
)
φ(θ)dθ

]
+
[
I−R(t)†R(t)

]
θ(t)ξ, θ(·)∈L2(s, T ;L (M,Rm)),∀ξ=

(
x
φ

)
.(6.17)670

Then, K̄(·) is the optimal closed-loop strategy for Problem (P̃), and the value function671

is as follows:672

V(s, x, φ(·))=
〈
E0(s)x, x

〉
+2

∫ 0

−δ

〈
E1(s, θ)φ(θ),x

〉
dθ+

∫
[−δ,0]2

〈
E2(s, θ, α)φ(α),φ(θ)

〉
dαdθ.

Proof. For any u(·) ∈ L2
F(s, T ;Rm), let X(·) be the state satisfying (6.1). Define673

Γ(t):=⟨E0(t)X(t),X(t)⟩+2
∫ 0

−δ

⟨E1(t,θ)X(t+θ),X(t)⟩dθ+
∫
[−δ,0]2
⟨E2(t,θ,α)X(t+α),X(t+θ)⟩dαdθ.

Then, by (6.15)–(6.17), with some computations we derive674

dΓ(t)+
〈
Q00(t)X(t), X(t)

〉
+2

∫ 0

−δ

〈
Q10(t,θ)

⊤X(t+θ),X(t)
〉
dθ+

∫
[−δ,0]2

〈
Q11(t,θ,θ

′)X(t+θ),

X(t+θ′)
〉
dθ′dθ+2

〈
S00(t)X(t), u(t)

〉
+2

∫ 0

−δ

〈
S01(t,θ)X(t+θ), u(t)

〉
dθ+

〈
R00(t)u(t), u(t)

〉
=
〈
R(t)

[
u(t)−K̄(t)

(
X(t)
Xt

)]
, u(t)−K̄(t)

(
X(t)
Xt

)〉
, a.e. t∈ [s, T ].

Integrating both sides of which from s to T , we complete the proof.675
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Corollary 6.8. Suppose all coefficients of Problem (P̃) are continuous. Let676

E0(t), E1(t, θ), E2(t, θ, α), t ∈ [s, T ], θ, α ∈ [−δ, 0], be continuous functions satisfying677

the coupled matrix-valued Riccati equation (6.15), and R(t) = R00(t) +D⊤
0 E0(t)D0 >678

0. Let continuous functions E0(t), E1(t, θ), E2(t, θ, α), E3(t, θ), E4(t, θ, α), E5(t, θ, α),679

t ∈ [s, T ], θ, α ∈ [−δ, 0], satisfy the coupled matrix-valued Riccati equations (5.9)–680

(5.11). Then, E0(t)=E0(t), E1(t, θ)=E1(t, θ)
⊤, E2(t, θ, α)=E2(t, θ, α), E3(t, θ, α), E4(t,681

θ, α), E5(t, θ, α) = 0; and the closed-loop outcome control of Problem (P̃) is as follows:682

(6.18) ū(t) = K̄(t)X̄(t),683

where K̄(·) is defined by (6.17) and X̄(·) is the solution to (6.5). In this case, (6.18)684

is the same as the closed-loop representation of the open-loop optimal control (5.13).685

Remark 6.9. Similar to Remark 5.4, let Ai,D0,G00,G10,G11 = 0, i = 1, · · · , N−1.686

Then, (6.15) admits a unique solution. Theorem 6.5 assures the closed-loop solvability687

for Problem (P̃) by the solvability of the differential operator-valued Riccati equation688

(6.6). Furthermore, by the coupled matrix-valued Riccati equation (6.15), Theorem689

6.7 explicitly represents the optimal closed-loop strategy K̄(·) using the coefficients of690

the original delayed control systems. When delay disappears in Problem (P̃), Theorem691

6.7 is similar to the sufficient part of Theorem 2.4.3 in [31]. When the coefficients of692

the state equation (6.1) are time-variant, Theorem 6.7 also holds.693

7. Concluding remarks. This paper studies the linear quadratic optimal con-694

trol problem for a delayed stochastic system with both state delay and control delay695

in the diffusion term. We transform it into an infinite dimensional problem with-696

out delay, ensuring the open-loop solvability through a constrained forward-backward697

stochastic evolution system and a convexity condition. We also provide a closed-698

loop representation using a coupled matrix-valued Riccati equation and assure the699

closed-loop solvability via a differential operator-valued Riccati equation, ultimately700

clarifying the original delayed optimal control problem.701
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